Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant S. pseudintermedius (MRSP) are important causes of infection in pets, and are resistant to many different antibiotics. It’s therefore very important that these bacteria are cultured and tested in a lab to determine what antibiotics may be effective. Even then, choosing an effective medication can be difficult due to the limited number of potentially effective drugs.
Treatment selection is further complicated by problems that can occur when methicillin-resistant staphylococci are tested against certain drugs in the lab – problems that are not readily apparent unless extra testing is done. One "problem" drug is the antibiotic clindamycin. Clindamycin can be an effective treatment for MRSA or MRSP infections, but some MRSA strains may be resistant to it despite appearing to be susceptible based on normal laboratory testing. This is because the bacteria can have "inducible resistance". Inducible resistance can be detected by a special test called a D-test (see picture), but this test is not widely performed in veterinary laboratories.
In recent study presented by Dr. Meredith Faires (University of Guelph) at a conference last week, 55% of MRSA from dogs and cats that were reported to be resistant to erythromycin and susceptible to clindamycin were actually inducibly resistant to clindamycin. But no MRSA that were susceptible to erythromycin were inducibly resistant to clindamycin. In contrast, inducible resistance to clindamycin was not identified in any MRSP. Therefore, in the absence of specific testing for inducible resistance (i.e. a D-test), it is wise to consider all erythromycin resistant MRSA to be clindamycin resistant as well, regardless of the results of traditional antibiotic susceptibilty testing.