INTRODUCTION

Surgical site infections (SSIs) are an inherent risk of any surgical procedure and can be associated with significant morbidity, mortality and treatment costs. The international epidemic of methicillin-resistant staphylococcal infections has increased interest in SSIs because of patient health, the potential for outbreaks, and zoonotic disease concerns.

Despite the relevance of SSIs, limited data are available for companion animals, particularly studies using active surveillance and standard SSI definitions. Reliance on medical record data, failure to differentiate SSI from inflammation and inadequate timeframe for follow-up are common weaknesses of reported SSI data.

Good SSI data are required for proper assessment of risk, implementation of infection control measures and assessment of patient care and effectiveness of interventions.

OBJECTIVES

1) To describe the incidence of SSI in dogs and cats undergoing surgical procedures at the Ontario Veterinary College Health Sciences Centre (OVCHSC) over a 1-yr period.
2) To describe and compare procedure-specific SSI rates.
3) To identify risk factors for development of SSI.

MATERIALS AND METHODS

All dogs and cats undergoing a surgical procedure between Sept 1, 2010 and Sept 1, 2011 were enrolled.

Patient, procedure and various medical and outcome data were obtained from the medical record.

Active surveillance for SSI was performed by calling animal owners 30d after surgery, with additional investigation 1yr after surgery for procedures that involved a surgical implant.

Standard SSI definitions were used (Table 1).

Fisher’s exact or chi-squared tests were used for categorical comparisons.

RESULTS

• 10 day follow-up has been completed on 561 patients, with complete medical record data compiled for 395 (368 dogs and 27 cats).

• SSIs were identified in 18 (3.2%) animals (Table 1), 17 (4.6%) dogs and 1 (3.7%) cat (P=0.90).

• Superficial SSI was most common (Figure 1). An additional 14 (2.8%) of animals had incision inflammation, for a total abnormal incision rate of 5.7%.

• Post-hospital discharge procedure specific surgical site infection (SSI) surveillance in small animal patients

Ryen Turk, Ameet Singh, J Scott Weese
University of Guelph, Guelph, Ontario, Canada

INTRODUCTION

• Surgical site infections (SSIs) are an inherent risk of any surgical procedure and can be associated with significant morbidity, mortality and treatment costs. The international epidemic of methicillin-resistant staphylococcal infections has increased interest in SSIs because of patient health, the potential for outbreaks, and zoonotic disease concerns.

• Despite the relevance of SSIs, limited data are available for companion animals, particularly studies using active surveillance and standard SSI definitions. Reliance on medical record data, failure to differentiate SSI from inflammation and inadequate timeframe for follow-up are common weaknesses of reported SSI data.

• Good SSI data are required for proper assessment of risk, implementation of infection control measures and assessment of patient care and effectiveness of interventions.

OBJECTIVES

1) To describe the incidence of SSI in dogs and cats undergoing surgical procedures at the Ontario Veterinary College Health Sciences Centre (OVCHSC) over a 1-yr period.
2) To describe and compare procedure-specific SSI rates.
3) To identify risk factors for development of SSI.

MATERIALS AND METHODS

All dogs and cats undergoing a surgical procedure between Sept 1, 2010 and Sept 1, 2011 were enrolled.

• Patient, procedure and various medical and outcome data were obtained from the medical record.

• Active surveillance for SSI was performed by calling animal owners 30d after surgery, with additional investigation 1yr after surgery for procedures that involved a surgical implant.

• Standard SSI definitions were used (Table 1).

• Fisher’s exact or chi-squared tests were used for categorical comparisons.

RESULTS

• 10 day follow-up has been completed on 561 patients, with complete medical record data compiled for 395 (368 dogs and 27 cats).

• SSIs were identified in 18 (3.2%) animals (Table 1), 17 (4.6%) dogs and 1 (3.7%) cat (P=0.90).

• Superficial SSI was most common (Figure 1). An additional 14 (2.8%) of animals had incision inflammation, for a total abnormal incision rate of 5.7%.

• The SSI rate was consistent with other data and while SSIs only occurred in small percentage of infections, the impact is potentially high. This is particularly true in surgeries involving implants, where the implications of SSI can be particularly high.

• While superficial infections were most common, deep infections accounted for 20% of infections. Deep infections are of greater concern because they can be much harder to treat.

• Reliance on the medical for SSI data can potentially result in poor quality data. Only one third of SSIs were clearly documented in the record. Additionally, failure to differentiate infection from inflammation can result in inclusion of a significant percentage of false positive cases. Therefore, medical record based data should be interpreted with care unless there is corresponding evaluation of the accuracy of such data.

• The low rates of SSIs being reported in the medical record likely indicates poor reporting of SSIs identified by referring veterinarians after patients were returned to their care. This highlights the need for better communication and the potential underestimation of SSI rates when relying on medical record data.

• Methicillin-resistant staphylococci were the most commonly documented causes of infection. These did not appear to be associated with any outbreaks, indicating the importance of these pathogens as causes of endemic disease.

• Active SSI surveillance is an important aspect of the infection control program. However, obtaining high quality data can be cumbersome and approaches to optimize reporting with limited personnel time are required.

ACKNOWLEDGEMENTS

This study was supported by the Ontario Veterinary College Pet Trust.