While it shouldn’t come as a surprise considering other studies, a recent study in PLoS One (O’Brien et al 2012) has caused a bit of a stir in the US. This study, headed up by Dr. Tara Smith’s research group in Iowa, looked for methicillin-resistant Staphylococcus aureus (MRSA) in retail pork. They bought pork from different stores in Iowa, Minnesota and New Jersey, and tested it for the presence of MRSA. They focused on pork because MRSA can be found widely in pigs internationally, including in the US.

Not surprisingly, they found MRSA. Overall, they tested 395 pork samples from 36 stores, including both "conventional" pork (300 samples) and "alternative" pork (95 samples). The latter consisted of samples labelled "raised without antibiotics" or "raised without antibiotic growth promotants." MRSA was found in 6.6% of samples; 6.3% of conventional pork samples and 7.4% of alternative pork samples.

When they looked at the MRSA types that were present, 27% were the ST398 "livestock-associated" MRSA that’s most commonly found in pigs.  However, like our earlier Canadian studies, they found common "human-associated" MRSA strains more often. These strains can also be found in pigs, albeit less commonly than ST398, and it’s unclear whether meat contamination with these strains comes from pigs or from people who handle the meat throughout the processing chain.

The fact that there was no difference between conventional and antibiotic-free pork isn’t surprising to me, although it catches some people off-guard because of some basic over-assumptions about the relationship between antibiotics and MRSA in food animals. We can find MRSA quite commonly on both regular and antibiotic-free farms.  While it’s reasonable to assume that antibiotics were a key factor in driving the emergence of MRSA in pigs, there’s not much evidence showing that ongoing antibiotic use is an important factor in determining whether MRSA is present on specific farms or in specific pigs. One potential explanation is that in order to control infections, farms that stop using antibiotics start using other substances such as zinc in feed to help control overgrowth of certain intestinal bacteria, and these compounds may be just as effective at selecting for certain resistant bugs as classical antibiotics. That’s just one possible explanation, but it shows how complex the issue of antibiotic-resistance is, and it shows that simply saying "stop using antibiotics," without really looking at the overall problem, won’t necessarily reduce MRSA.

What does the presence of MRSA in food mean? Who knows? MRSA is a pretty high profile bug, and with good reason, because it’s a very important cause of infection in people. A key aspect of MRSA in food is that cooking food will kill the bacteria (as well as many of the other harmful bacteria that often contaminate raw meat). So proper attention to food safety, including thorough cooking, cleaning of surfaces, prevention of cross-contamination and hand hygiene, should greatly reduce any risk (the problem is a lot of these things aren’t usually done very well).