Staphylococcus schleiferi doesn’t get much respect. Most of the attention gets paid to Staphylococcus aureus (because MRSA, the methicillin-resistant version, is such a high profile pathogen in humans and it can be transmitted between people and pets) and S. pseudintermedius (because it’s a leading cause of infection and MRSP, the methicillin-resistant type, is spreading very quickly and widely in dogs).

Staphylococcus schleiferi is another Staphylococcus species that can cause various infections in dogs, particularly skin and ear infections. It’s often overlooked, or more specifically, unnoticed. The problem is it takes some effort to differentiate it from other staph. This species is relatively unique in that it has two distinct subtypes – S. schleiferi coagulans and S. schleiferi schleiferi. The first one is very similar to S. pseudintermedius, and not all diagnostic labs go through the trouble of trying to distinguish one from the other. So there may actually be a lot of S. schleiferi infections that get mistakenly diagnosed as S. pseudintermedius. The second subtype is coagulase-negative (whereas S. pseudintermidius, S. aureus the first subtype of S. schleiferi are all coagulase-positive) and most diagnostic labs don’t do any identification of coagulase negative staph. As a result, we only have a superficial understanding of it and its epidemiology.

A recent study from the University of Pennsylvania (Cain et al., J Am Vet Med Assoc 2011) that looked at 225 dogs with S. schleiferi infections has provided some insight into this perhaps not-so-unusual bug. Some highlights:

Ear infections and skin infections accounted for 87% of cases.

  • That’s expected, since these are very common types of infections for any kind of staph.

Allergic skin disease was the most common underlying disease.

  • That’s also not surprising. Most staph infections occur secondary to some underlying problem or procedure (e.g. surgery). This shows the importance of taking the time and effort to diagnoses and control allergic skin disease, in order to help prevent infections before they occur.

57% of S. schleiferi  isolates were methicillin-resistant.

  • Ugh! I’m not very surprised but it’s scary how often we see methicillin-resistance in some staphylococci, because of the complications it can cause with treatment. Methicillin-resistant staph infections can be hard to treat because there may be few effective antimicrobials available.

Methicillin-resistance was more common in the coagulase negative subspecies, S. schleiferi schleiferi.

  • It’s hard to say whether this means a lot from a clinical standpoint. In generally, coagulase negative staph are much less of a concern than the coagulase positive staph since they are less likely to cause disease. However, we don’t really understand the differences between the two S. schleiferi‘s. If the coagulase-negative version is less able to cause disease, then a lower rate of methicillin resistance in the more concerning coagulase positive type is better than vice versa, but I’m not sure we have enough evidence to say much about this at the moment.

Treatment with a penicillin (e.g. amoxicillin), first generation cephalosporin (e.g. cephalexin) or 3rd generation cephalosporin within the preceding 30 days was associated with having methicillin-resistant S. schleiferi.

  • That’s not surprising and is one more piece of evidence that "routine" use of antibiotics can contribute to selection for methicillin-resistant staph. It shows how we need to focus on prudent use of antibiotics.

A question I sometimes get is whether an animal with methicillin-resistant S. schleiferi poses a risk to people. We don’t really know, but the risk is probably quite limited.

  • S. schleiferi coagulans infections in people are extremely rare, so this bug doesn’t seem to have much of an affinity for humans.
  • S. schleiferi schleiferi infections in people are more common, but it is thought that this subtype is a "human Staphylococcus." Therefore, while it can cause infections in people (usually infections in people that are already sick and/or in hospital), it probably comes from people, not animals.
  • So, overall, the risk posed by infected animals is minimal. However, some S. schleiferi can be very drug resistant and you don’t really want to have an infection with a multidrug resistant bacterium of any kind ("you’re case is very unique" isn’t something you want to hear from your doctor), so using good general infection control and hygiene practices around infected dogs makes sense.