Another dog importation issue

A GoFundMe campaign is underway to pay the vet bills for a sick dog that was imported from Ecuador. Here's the short version (click here to go to the campaign site for the whole story):

Someone from the Ottawa area was in Quito and saw a street puppy she liked. On her last day in Ecuador, she noticed he was looking sick. She took him to a local vet but he got worse overnight to the point that he was "barely able to hold himself up." So, she brought him home to Canada with her. I wonder about the ethics of subjecting a critically ill animal to a couple of long flights, but he managed to survive the trip and was successfully treated for parvoviral enteritis at an Ottawa veterinary hospital. The outcome’s obviously great for the dog and I can completely see how someone would do this.

However, bigger issues need to be considered:

  • Why is a dog that was "adopted" not even 24 hours earlier, with no vaccination or other medical history, allowed into the country?
  • Why is an obviously very sick dog allowed into the country?
  • Why is a sick dog that has not been vaccinated against rabies and which can barely hold itself up (a sign that could actually be consistent with rabies) allowed into the country?

This part is not the owner’s fault. She’s not expected to know anything about rabies or any other infectious disease risks that this dog could pose (but subjecting a sick puppy to this type of journey without necessarily being able to afford the required medical care is another story).

The bigger issue is why Canada has pretty much the most lax importation requirements of anywhere on the planet. As a result we’re importing disease into the country, and really we have enough diseases of our own to worry about without bringing in more!

There was a happy ending to this story, but if the puppy was rabid (certainly not an uncommon situation in street dogs in many countries) or had some other important infectious disease, the situation could have been much worse for everyone.


Another human Staph (pseud)intermedius infection

Dr. Stephen Page, a regular supplier of good blog material, sent me a couple papers from the Quarterly Journal of Medicine the other day. One was an interesting report of "Staphylococcus intermedius" infection in a person, entitled "A canine bug in a human heart" (Koci et al, Q J Med 2015;108:337-338).

It’s almost guaranteed that this wasn’t S. intermedius but rather S. pseudintermedius (some medical microbiology labs are apparently still a couple decades behind in identifying this bug). Regardless, it’s an interesting case of a 58-year-old man with a pacemaker that developed fever, chills and a headache. He reported that a neighbour’s dog had licked his hand a few weeks earlier. The pacemaker incision site was unremarkable but "Staphylococcus intermedius" was isolated from two different blood samples. That's a significant concern in a patient like this because of the potential for infection of the heart valves and/or the pacemaker leads. Infections like that can be very serious and hard to eliminate (especially since we know that S. pseudintermedius tends to produce biofilm, which helps it hang around sites like pacemaker leads and avoid antibiotics). Fortunately, after a couple rounds of antibiotics and removal of the pacemaker system, he recovered.

It’s interesting (and encouraging) that the dog exposure was reported. Whether he offered the information or they asked about dog contact isn’t clear, but this is the type of information that’s often missed.

Putting this report into perspective is important. This, and various other reports of S. pseudintermedius infections, show that this dog-associated bacterium can cause disease in people.

But remember:

  • Single cases continue to appear in the medical literature. That means it’s really rare (since a single occurrence is enough to prompt a publication).
  • The relative risk from exposure is limited. Most dogs carry this bacterium and huge numbers of people are exposed every day. So, the incidence of disease with respect to exposure is incredibly low

While "low" is good, it’s not much consolation if you’re the one with the rare but life-threatening infection. So, some basic preventative practices are indicated. Avoiding contact of dog saliva with open wounds would be one. Good general hygiene practices (especially handwashing), avoiding contact with feces and similar common sense measures are probably the key.  Making sure physicians know about animal contact and think about potential zoonotic infections is also important, particularly for people who are at increased risk of infection and disease.

White House antibiotic resistance action plan

The White House has released a "National Action Plan for Combating Antibiotic Resistant Bacteria". This follows on the heels of "Executive Order 13676: Combating Antibiotic-Resistant Bacteria" which was issued by President Barack Obama on September 18, 2014, along with the "National Strategy for Combating Antibiotic-Resistant Bacteria" presented by the President’s Council of Advisors on Science and Technology (PCAST).

The 63-page document addresses several key areas, including preventing spread of resistant infections, improving surveillance of resistant bacteria in both animals and people, development of better and more rapid tests to diagnose resistant infections sooner, development of new therapeutic options and vaccines to treat and prevent infections, and improving international collaboration on all these fronts. With the US being Canada's biggest and closest trading partner, hopefully there will be a ripple effect that will result in some action on the Canadian side of the border as well.  It will be interesting to see how much actual "action" comes from it in any case, but it's great to see the subject getting addressed at such a high level.

Pet treats...what to look out for

Pet treats are widely used, and for good reason. Treats can be useful training tools, and pets typically like treats (and owners like to make their pets happy). But even something as simple as feeding pets treats carries some risks (and not just to the pet).  Balancing the risks and benefits is the key. For example:


  • I have to start with this one, since Worms & Germs are what we deal with here. Pet treats have been implicated in a few different outbreaks in people. Salmonella-contaminated pig ear treats are historically the main offender, but any animal-based treat that is not processed to kill pathogens (e.g. cooking, pasteurization, irradiation) is a concern.
  • While pig ears used to be the primary culprit when it comes to contaminated treats, now, you can go into some pet stores and get dehydrated "insert almost any body part here" - lung, trachea, liver, ear, etc. Presumably these items carry a similar degree of risk for Salmonella if they are otherwise unprocessed.


  • The main concern here is chicken, duck and sweet potato jerky treats from China, which have been implicated in a large number of pet illnesses and deaths, including at least 1000 dead dogs. No reason for the Fanconi-like syndrome associated with these treats has been identified, and therefore there’s no way to test the products to ensure the same problem won't happen again.


  • Hard treats can result in tooth damage or fractures, which can be both painful and expensive to address.
  • Treats with sharp edges (e.g. bone fragments) can cause damage to the intestinal tract as well.


  • Dogs eat stuff they’re not supposed to all the time (at least mine does). Most often, it’s not a problem, but sometimes it is. If a pet swallows a large piece of a poorly digestible treat it can cause an intestinal blockage. Realistically, this is of limited concern for most edible treats, but is a bigger issue with toys and things like rawhides.


  • Weight gain and obesity aren't usually considered when thinking about problems with treats, but a lot of treats are high in calories, and obesity isn’t just a problem with pet owners. As with human snacking, moderation is the key. Also remember that sometimes size does matter, as  demonstrated in a recent study of bully sticks (dried bull penis) in which is was determined that these treats contained 9-22 calories per inch (Freeman et al., Can Vet J 2013).

Before giving it to your pet, think about the treat, how to use it and what problems might occur. Most treats, particularly those that are not raw animal product based (e.g. pig ears), not prone to fragmenting (e.g. bones, especially cooked bones) and not excessively hard (e.g. bones) are okay in moderation.

One question that’s come up recently is whether pig hair in or on treats can be a problem...

For some, pig hair on their dog's treats has a bit of an "ick" factor (although it’s a little odd to see people freak out about some hair and then feed their dog a chunk of bull penis or the ear of a pig), but is there really a risk?

  • I can't see there being any realistic concerns.
  • A dog would have to eat a massive amount of hair-laden treats to have any potential concerns about obstruction (and even then the risk would be remote at best).
  • Hair could be contaminated with various bacteria, like other raw animal parts, but if the treat is cooked (or otherwise treated to kill bacteria) that becomes irrelevant. Certainly, it’s fair to ask whether hair is supposed to be there but I wouldn’t get worked up about it. I’d be more concerned about whether the treat is processed to kill pathogens and fed in moderation (to reduce caloric intake more than hair intake).

Lungworms in Ontario dog

Another emerging infectious disease issue for the Ontario dog population appears to be lungworms. As you’d probably guess, lungworms are parasites that live in (or near) the lungs. A variety of different types of lungworms exist, but most concerns around here relate to two.

In Canada, both the fox lungworm (Crenosoma vulpis) and the French heartworm (Angiostrongylus vasorum) have been found in the Atlantic provinces for a while. However, this seems to be a new situation in Ontario, with a small but increasing number of reports of Crenosoma vulpis in dogs that have not been outside of the province. I haven’t heard about any Angiostrongylus cases in the province yet (and hope it stays that way - see why below).

Foxes are the natural reservoir of both of these lungworms. Like many parasites, lungworms have a rather bizarre life cycle. Adult Crenosoma worms live in the lungs and lay eggs. The eggs are then coughed up, swallowed and passed in feces. After being pooped out, the lungworm larvae infect snails. Dogs get infected by eating infected snails, as the larvae move from the intestinal tract and through the body to the lungs, where they mature and the whole cycle starts again.

It’s similar with Angiostrongylus, although the larvae can also infect frogs (when they feed on infected snails), and dogs can be infected by eating infected snails or frogs. After a dog swallows the larvae, they migrate into the bloodstream and make their way to the heart and arteries of the lung.

Typical signs of Crenosoma infection in dogs include a chronic or intermittent cough that’s not responsive to common treatments directed at bacterial or inflammatory diseases. Fortunately, Crenosoma infections are usually treatable with anti-parasitics, with a good outcome.

Angiostrongylus vasorum is a bigger concern, because infection can result in more severe lung disease, blood clots, heart failure and a few other bad things. Adult worms can also head to other parts of the body and cause more problems (but fortunately that's pretty uncommon).

If one or both of these parasites are established in the fox population in the province, lungworm is not going away. Understanding where it is present will be important for prompt diagnosis and to determine the best preventive medicine programs. As it stands now, lungworms have to be considered as a potential cause of chronic cough in dogs in Ontario. It’s still probably rare but is potentially treatable and something of which to be aware.


Out of bounds, out of luck

From "A Brazilian [soccer] player was taken to a hospital for an anti-rabies shot after being bitten by a police dog during a match. The incident happened in the second half of a first-division game between Democrata and Tupi on Sunday in the Minas Gerais state regional championship. Democrata striker Joao Paulo was bit on his left arm after running out of bounds and falling too close to a police officer's dog behind one of the goals. The dog was on a leash but the officer was not able to pull it back in time to avoid the attack. Joao Paulo returned to the match after doctors wrapped his arm in bandages, but the team said he was taken to a hospital immediately after the game to receive the anti-rabies vaccine.”

Oops, on a few different levels.

Firstly, it’s surprising that a police dog would bite in a situation like this. They’re not typically trained to attack in the face of soccer field boundary transgressions.

Secondly, the medical response is a bit bizarre. Yes, rabies needs to be considered after any bite from a dog. You’d hope the police dog was vaccinated against rabies, making it a pretty low risk situation. Regardless, rabies post-exposure prophylaxis is completely unnecessary. Presumably, they’d be able to quarantine and observe the police dog for 10 days. If they can do that, there’s no need for rabies treatment. If the dog’s not showing signs of rabies after 10 days, it could not have been infectious at the time of the bite. That’s a lot more logical response than treating the bitten player.

What the player really needed was proper bite first aid. Placing a bandage on might be the quickest way to get him back on the field, but properly flushing the wound is the best way to prevent infection (something that could keep him off the field much longer).


Mad Cow in Alberta

Last week the Canadian Food Inspection Agency (CFIA) announced that a case of bovine spongiform encephalopathy (BSE), more commonly known as Mad Cow Disease, was found in an Alberta beef cow

BSE belongs to a group of diseases called transmissible spongiform encephalopathies (TSEs) that are not caused by bacteria, viruses, fungi or parasites, but rather by abnormally-shaped proteins call prions.  Prions are extremely difficult to destroy, and they can't be killed using antimicrobial drugs because they aren't actually microbes.  Exposure to the prions, most commonly through ingestion, can lead to spread of disease.  That's why Canada banned the use of most animal proteins (specifically from most other mammals) from use in cattle feed back in 1997, in order to decrease the risk of BSE spreading if it ever got into the Canadian cattle population.  In 2003 an enhanced feed ban was introduced after the first case of BSE was found in a Canadian cow.  The ban prohibits "specified risk materials" (SRM) from cattle from entering the human food chain AND from being used in animal feeds.  The SRM includes all the tissues where prions would most likely be found, such as the brain and spinal cord, in animals over 30 months of age.

Most TSEs seem to be relatively species specific, but there is still a lot we don't know about them.  Unfortunately, there is strong evidence that the prion that causes BSE can cause disease in people, called variant Creutzfeldt-Jacob disease (vCJD).  The "variant" differentiates this disease from sporadic or familial CJD, a rare human disease that has been recognized since the 1920s.  Just over 200 cases of vCJD have been diagnosed since it was first detected in 1996, most of which occurred in Great Britain.  There is currently no evidence that these prions can cause disease is dogs or horses, but they do appear to be the causative agent of a similar disease in cats (feline spongiform encephalopathy (FSE)).  Given that these prions have crossed at least two species barriers (people and cats), the possibility that they could affect other species as well cannot be dismissed.

What will be the impact of this single case in Alberta?  Hopefully not much.  The World Organization for Animal Health considers Canada a controlled BSE risk country, and one case won't change that status.  Canada has an extensive surveillance system through which more than 30 000 cattle are tested every year for BSE, and this is the first case detected in 4 years.  This case was in fact a good example of the surveillance system in action - the case was detected before any part of the cow (not just the SRM) was allowed to enter the food chain.  The Canadian food supply is still very safe, as is the animal food supply.  The worrisome part of this case is that the cow was born in Alberta in 2009, well after the enhanced feed ban was put in place.  So the question is, how did the cow get exposed to the prions?  Cases can rarely also occur sporadically in cattle (as for classical CJD in people), could this have been one of those?  The incubation period for BSE is typically years, so the investigation is focusing a lot on the farm of origin, not just the farm where the cow last resided. This is where the ability to trace animal movement and movement of animal products becomes so important, as they are in so many disease investigations.

Echinococcus multilocularis...small tapeworm, big problem

Echinococcus multilocularis is causing increasing concern in Ontario lately (amongst the few people who are aware of it, at least) as there’s evidence that it may have become established in the province. This parasite is a tapeworm harboured by canids (including both domestic dogs and wild ones like coyotes and foxes), and can cause serious disease in people. It’s an insidious problem since the incubation period in humans is many years, meaning it takes a long to realize that there’s a problem.

We don’t know the status of this parasite in the province but there’s enough evidence to be concerned and look into the issue further.

If you want to learn more about it, Dr. Andrew Peregrine’s recent seminar on the topic is a great start.

Turtles and botulism

As reported on (with, as ever, an entertaining title: You see a cute turtle, I see a bug factory: Infant botulism from C. butyricum) a recent paper in the journal Epidemiology and Infection (Shelley et al. 2015) reports an unusual turtle-associated disease.

When we think about turtles and infections (especially infections of young kids), the first thing that comes to mind is Salmonella. That’s fair because it’s common and can be serious. However, like any animal, turtles can carry a range of microbes that can infect people. Apparently, we need to add the bacterium Clostridium butyricum to the list.

The paper describes botulism in two infants caused by this bacterium and related to turtle exposure. Botulism is classically caused by Clostridium botulinum, a bacterium that can produce some of the most potent neurotoxins known to science. However, a couple of other bacteria, including C. butyricum, can produce similar toxins and cause the same disease. Infants are highly susceptible to disease caused by ingestion of the bacterium, since it is able to grow in their gut because of their poorly developed intestinal bacterial flora. (In more mature individuals, botulism isn’t usually caused by ingestion of the bacterium itself. Rather, it's caused by eating food that contains the toxin that was produced when the bacterium was able to grow in the food).

The first case was an 11-day-old boy that was presented to a hospital with various neuromuscular abnormalities. As is common, he had to be put on a ventilator to help him breathe, but fortunately he made a full recovery over the next 10 days. Botulism was suspected early in the course of disease and he received antitoxin (antibodies against the toxins), which probably played a key role in his response. However, C. butryicum, not C. botulinum, was identified in his stool and it was confirmed that the bacterium was able to produce botulinum toxin E.

The second case was a child of about the same age admitted to hospital with breathing problems and a few other issues. Botulinum toxin E was found in his stool, and C. butyricum was isolated.

Investigation of possible sources of the bacterium ensued. Various food and environmental surfaces, plus feces from the parents, were tested. For the first boy, C. butyricum was isolated from his mother’s feces, as well as their turtle aquarium water, sediment and turtle food. The same batch of food from the pet store was negative, so the food was probably contaminated in the house.

The only positive location in the second child’s case was the turtle tank water in a relative’s house, not the child’s house. The relative had held and fed the baby.

These cases also led to a review of a case of C. butyricum botulism that had occurred in 2010. It was assumed to have been caused by honey ingestion, but further investigation revealed the presence of the same type of turtle (yellow-bellied terrapin) in the house.

This report doesn’t change anything in terms of recommendations regarding how to manage turtles, but is good to raise awareness. Turtles should not be in households that have kids less than 5 years of age, for multiple disease reasons. Infection of the second child via a relative who owned turtles raises concern about how pathogens can be spread indirectly from turtles to high-risk individuals. The relative was reported to have put her finger in the baby’s mouth to soothe him at one point, and that would be a logical source of exposure, highlighting the need for good hygiene practices after having contact with animals and their environments, especially high-risk species such as turtles.

As the authors conclude “Adherence to advice that reptiles, including terrapins, should not be kept as pets in homes where there are children aged <5 years, primarily to prevent salmonellosis, would also prevent cases of infant botulism associated with terrapins. The importance of hand washing after handling these pets also needs to be stressed, especially while visiting families with small children.”

Rabies warning for Kugluktuk residents

Residents of the Nunavut community of Kugluktuk are being warned about rabies in the area after a puppy that originated there was diagnosed with the disease in Saskatchewan. It’s not the first time rabies has been transported from a northern community in a dog, and this case should serve as yet another reminder of the risks of transporting diseases with animals (even within Canada). It looks like the puppy was "rescued" from the community and adopted in Saskatchewan. There are a lot of feral and semi-feral dogs in some northern areas, and various groups try to re-home them (with the best of intentions) to more southern communities.

The Deptartment of Health is warning Kugluktuk residents to stay away from dogs that behave strangely, and to make sure that they go to a health centre if bitten or scratched - good advice, although I’d expand it to staying away from all strange dogs, regardless of how they’re behaving.

There are two other important issues that this story brings up. One is vaccination of dogs, which can be difficult in communities that have limited access to veterinary care and/or where many dogs are "community dogs", without a defined owner to take responsibility for their care. Increasing vaccination is important to reduce the risk of rabies transmission, and there are efforts in many areas to do this. The other issue is adoption of animals. While rabies is now  fairly rare in Canada, this isn’t the first time this has happened, so groups that wish to remove animals from northern communities should ensure that the animals are properly vaccinated prior to transportation, and that new owners are warned about the increased risk of rabies (albeit still quite low). You can never 100% prevent disease transmission associated with animal movement, but making sure animals appear healthy before shipping, having good preventive medicine practices in place, and adequately tracking animals after they are shipped are important (and practical) measures to reduce the risk.

This case (and the location of Kugluktuk) can be found on


Deworming wild and feral animals

I had a question the other day about roundworms in feral cats. Specifically, how do you deworm a group of cats that you don’t handle and may not be able to catch? There are a few possible approaches, from trapping and treating (oral or topical) to trying to get a dewormer into them via food. Neither is a great option in many situations, because you can't usually catch all the animals (and feral cats aren’t always the nicest to handle...), or they might not get the proper dose of drug if its given in food.

Baits are a convenient way to treat wild and feral animals, since they are easy to administer and can work quite well. Rabies vaccine baiting has been highly effective in wildlife, and a similar approach could be used for parasite control.

A recent study in Emerging Infectious Diseases (Page et al. 2014) shows the potential usefulness of dewormer baiting for control of the raccoon roundworm, Baylisascaris procyonis, in urban raccoons. The researchers made dewormer baits similar to those used for rabies vaccine, with marshmallow flavoring (don’t ask me why, but raccoons love marshmallows). They mixed a dewormer, pyrantel pamoate, with marshmallow crème, and sealed it in a hollow fishmeal polymer bait container. They then distributed baits in the vicinity of raccoon latrines in suburban Chicago and also tracked a set of untreated latrines. Fecal samples were collected from the environment before and after one year of monthly baiting.

Pre-treatment, B. procyonis was identified in 13% of samples, equally distributed between sites they subsequently baited and sites they did not bait (to act as controls).

After the one year baiting period, B. procyonis eggs were found in 21% of samples from the untreated control sites but only 3% of the treated sites.  That's a pretty dramatic (and statistically significant) difference.

This shows the potential impact of a relatively easy and cost-effective method to deworm raccoons, to reduce contamination of the environment and subsequent human exposure. It couldn’t be a one-shot deal, though. You’d never eradicate the parasite and raccoons will continue to be exposed, even if levels in latrines decrease. So, ongoing baiting would be needed to control the parasite and keep contamination down. That involves more effort and cost, but could be reasonable in high risk areas, such as parks with lots of raccoons and lots of human and pet traffic, or in other areas where elimination of latrines is not practical but there is a reasonable risk of human or domestic animal exposure.

It also raises questions about whether this might be an effective approach for feral cat colonies... stay tuned.

Human rabies incubation record

Records are meant to be broken, and rabies incubation period is no exception.

I’m often asked what the incubation period of rabies is in people. My general answer is "a long time, and we don’t really know how long it can be."

A report in the Annals of Neurology (Boland et al 2014) highlights this fact. It describes a case of rabies in a person who emigrated from Brazil to the US eight years before dying of rabies virus infection.

But, you might say, how do we know the incubation period was 8 years, since rabies is endemic in the US?  Good question, and this is where molecular epidemiology comes in handy:

  • The rabies virus isolated from the person was determined to be a Latin American dog rabies virus strain.
  • This strain isn’t present in the US. Furthermore, the man had not returned to Brazil (or even left Massachusetts) in the previous 8 years, nor had he had any contact with animals from outside the country.
  • It was also reported that the man had contact with a dog that was acting strangely prior to leaving Brazil. He killed the dog with a piece of wood and handled the body without gloves.

It’s a pretty convincing story and tops earlier well-documented lengthy incubation reports.

How and why rabies does this is unclear. It’s unusual for such a virus to lay low in the body for many years, and then cause rapidly fatal disease.

A major disadvantage to long incubation periods (for rabies or any other pathogen) is you can’t say “Well, that exposure occurred a few months/years ago, so there’s nothing to worry about." Avoiding exposure in the first place is always best.

On the up side, it’s generally believed that if someone gets post-exposure treatment at any time before signs of rabies develop, it can be effective. So, if somehow the potential exposure of this person had been identified, even years after the event but prior to the development of disease, and he'd been treated, he probably wouldn’t have gotten rabies. From a practical standpoint, though, would post-exposure treatment be prescribed, particularly given its cost?

In some ways it would make sense to query past animal exposure in people, especially those who have been in areas where canine rabies is highly endemic, and to treat anyone reporting a potential exposure. Yet, given the low incidence of imported rabies in people and the high cost of post-exposure treatment, it’s unlikely to be done.


Tags: ,

PetSmart employee worried about rabies after rat bite

As reported on WKTR NewsChannel 3 in Virginia:

“An employee at PetSmart [in Williamburg, Virginia] says she was bitten by a rat on display and is now worried she has rabies. She feels the store isn’t doing enough to help her find out if she has it.

Victoria Verbeeck says she was working at the Williamsburg store on Wednesday morning when a rat bit her finger. The rat had been acting oddly lately, she said, but she had handled it before. “It turned around and just chomped down on my finger,” she said. “I was more like that really just happened.”

Since it happened, she says PetSmart hasn’t been acting fast enough in helping to get the rat tested. With the holidays, she says she was told she’d have to wait until Monday to get help from PetSmart because corporate offices are closed until then.

A spokesperson from PetSmart says the company is taking the situation seriously. The health department is now overseeing the testing, according to the spokesperson. It’s not clear when the results will be available.”

What is the risk of rabies?

  • Exceptionally low. Although rodents can be infected with rabies (as can any mammal) they rarely carry it (likely because they are usually killed by whatever animal may have transmitted it to them in the first place).  However, low risk doesn’t mean zero, so the woman's concerns shouldn’t be dismissed out of hand.

Is rabies the only concern?

  • No. In fact, there are other more concerning issues, such as rat bite fever, a potentially nasty infection transmitted most commonly by (not surprisingly) rat bites.

Is the delay in testing that the woman has encountered a problem?

  • For rabies, no, particularly for a minor bite of an extremity. There’s time to get things sorted out and a few days isn’t a concern. The stress of the wait is the biggest problem.
  • The wait is most relevant in terms of other potential infections, since those develop quicker.

How will they figure out if rabies is a concern?

  • For some species (e.g. dogs, cats), it’s well defined. If the biter is still alive and normal 10 days after the bite, the animal could not have been shedding rabies virus at the time of the bite. Rules are less clear for other species and those are handled on a case-by-case basis, but given the very low risk of rabies in rats and the fact that rats are not a reservoir species, a quarantine period would probably be reasonable in a case like this. However, figuring out why the rat was acting "oddly" and if there is any evidence of a neurological disease component is important. If the rat has neurological abnormalities, immediate euthanasia and rabies testing would probably be recommended.

What’s the big issue here?

  • It amazes me that a company like this would not have a comprehensive and well-communicated bite policy. A well-thought-out and scrutinized policy should be available in all stores and readily accessible to all personnel. It takes time to get a good policy developed, but it’s worth it based on the amount of time that’s saved down the road after bites like this (which are probably quite common but not typically reported) and it can help prevent bite-related complications and concerns. Hopefully they actually have a good policy, but the fact that they have to wait until corporate offices are open to find it highlights a problem.


Imported and local Leishmania, Finland

I’ve written a fair bit about leishmaniasis in dogs lately, mainly in the context of potential risks from imported dogs. This parasitic infection is a concern because it can be serious and hard to treat, and also affects humans. Dogs are the main reservoir of Leishmania infantum, and it’s an important cause of disease in people in some regions.

The cases of leishmaniasis that we’re seeing in Canada (a relatively large and increasing number) have been associated with the dubious practice of importing dogs from endemic regions (e.g. Greece, Israel, Spain). One of the counter-arguments that comes up sometimes is “we don’t have any vectors of the parasite in Canada” (i.e. insects that can spread L. infantum from one animal to another, or from animal to person). However, the statement really should be “we don’t have any known vectors of teh parasite in Canada”. We can’t say with any certainty that none of the many insect types that are found here could transmit the parasite.

Further, while insects are the main concern as the natural vector and means of spreading the parasite widely (and, most concerning, into the wild canid populations that are abundant in Canada), they’re not the only concern.  As a bloodborne infection, Leishmania has many other potential routes of transmission between dogs and from dogs to people.

A Finnish study in the journal Acta Veterinaria Scandinavica (Karkamo et al 2014) illustrates some of these concerns. The study describes autochthonous (non-imported) leishmaniasis in dogs that had never left Finland or received a blood transfusion.

The short story:

  • A male dog (dog A) was sent to Spain for 6 months in 2009 as part of a breeding exchange. When he got back to Finland, he was diagnosed with leishmaniasis. He was ultimately euthanized.
  • Dog B was a Spanish dog that was in Finland as part of the exchange. He tested positive for Leishmania antibodies some time after his return to Spain. He had limited contact with the other dogs, but bred dog C in 2009.
  • In June 2010, dog A accidentally (well, accidentally from the breeder’s standpoint… I’m sure it was intentional in his mind) mated with dog D, but pregnancy either didn’t occur or was aborted.
  • In August 2011, dog A got into a fight with another male (dog E).
  • In 2012, dog E "accidentally" bred dog D (daughter of dog C).
  • In the spring of 2013, that male (dog E) got into a fight with a different female (dog C).
  • Dogs A, D and E were euthanized because of severe leishmaniosis that did not respond to treatment.

(If your head is spinning, there’s an easier-to-interpret figure in the paper.)

The assumption is that:

  • Dog A was infected in Spain and brought the parasite back to Finland.
  • Dog C was infected by breeding or fighting.
  • Dog D either got infected from its mother, mating with dog A or E, or fighting with dog E.
  • Dog E was infected by bites.

The authors’ conclusions also apply to non-Nordic regions:

It is likely that exotic diseases will be identified at increasing rates in Nordic countries in the future. Climate change may allow new insects to spread and survive in the Nordic countries and these insects may carry and spread new pathogens. Travelling of dogs has become more and more commonplace, which increases their risk of contracting and spreading diseases. The risk of spreading of the new vector-borne diseases within the Nordic countries has until now been considered low. Our findings show that this risk is not negligible and that leishmaniosis can spread in non-endemic areas without known vectors. In order to control this kind of risk, imported and breeding dogs should be tested for leishmaniosis before they leave their country of origin or before returning back home.

This case series only demonstrated risk to dogs, but the human aspect can’t be dismissed. We don’t know the true risks to humans from non-insect sources such as needlesticks, bites or contact with infected blood (e.g. contact of blood from an infected dog with an open sore). The risk is probably low but can’t be discounted. Stopping importation of infected dogs, and testing dogs coming from endemic areas would be a logical step to reduce the risks to dogs and people in non-endemic regions (although I won’t hold my breath).

EEE in Ontario 2014

2014 was the worst year ever for Eastern Equine Encephalitis (EEE) in Ontario (though our numbers still pale in comparison to more endemic areas in the southern US, such as Florida). A recent article published in the Animal Health Lab (AHL) Newletter (December 2014) by Dr. Alison Moore from OMAFRA sums things up well:

"Twenty-two horses and 2 emus in the province died or were euthanized due to the disease with potentially as many deaths being suspected by attending veterinarians. Two horses were confirmed infected but survived. Counties in Eastern Ontario suffered the greatest casualties. Diagnosis in 21 horses was by serum IgM ELISA testing and 3 were diagnosed by RT-PCR on brain tissue. The affected horses were diagnosed between the end of July and the end of October. Ages of affected horses ranged from 2-20+ years, with no breed or sex predilection. Most of the infected horses were unvaccinated backyard horses and only a single horse per property was clinically affected. Most horses had an acute onset of disease with death or euthanasia performed within 24-48 hours. Common clinical signs included ataxia progressing to recumbency, with fever noted in some and blindness and head pressing noted in others. In the 2 horses that survived, the clinical signs were mild (ataxia and lethargy). The 2 emus were diagnosed with hemorrhagic enteritis and EEEV confirmed in the intestine and liver by RT-PCR.

The virus causing EEE is transmitted by mosquitoes. In Ontario, the most important species is Culiseta melanura, which feeds on birds. Bridge vectors, mosquitoes that feed on both birds and mammals, then complete the cycle to humans and horses. Outbreaks occur in hardwood, flooded areas with competent avian reservoirs and mammals present. Horses and humans are dead-end hosts as they do not produce sufficient viremia to infect mosquitoes.

So why was 2014 such a devastating year? Some speculate that eastern Ontario was relatively warmer this year than other parts of the province, others say it was due to the amount of spring precipitation. Others implicate the spring migration of wading birds such as herons from Florida. Herons are a preferred host for Culiseta sp. over winter in Florida, a major reservoir state for EEEV. The spring migration of herons and similar birds is thought to disseminate the virus to the northern USA and Canada. OMAFRA and Public Health Ontario will be working together over the winter to determine any associations between ecological and meteorological factors and disease occurrence."

Given the amount of activity we saw with this virus this past summer, vaccination of horses against EEE (particularly in hard-hit areas) will be important come spring to help avoid a repeat of this year's outbreak.

More information about the occurrence of EEE and other equine neurologic diseases in Ontario is available on the OMAFRA website: Equine Neurological Disease Surveillance 2014.

Rabies exposure in a shelter, again

As I mentioned a few days ago, eliminating the risk of rabies in animal shelters is pretty much impossible. Another shelter-associated rabies exposure situation highlights the problems.

A cat at the Washington Area Humane Society was recently diagnosed with rabies, resulting in three people receiving post-exposure prophylaxis (i.e. rabies antibodies and a series of rabies vaccines). What’s quite interesting here is the fact that the cat had been in the shelter since May. So, unless the cat was exposed to rabies in the shelter (possible, but very unlikely), that means the incubation period was at least 6-7 months. That’s not unheard of, but it’s pretty long for a cat. We don’t know exactly how long the incubation period can be, except that it’s long. In humans, cases have been identified a few years after the presumed exposure. This situation shows how the 6 month quarantine that is used after exposure of unvaccinated animals is very reasonable, but still not a guarantee. It also shows how short-term isolation of animals in a shelter after arrival can’t guarantee there will be no rabies exposure (although it’s good for many other reasons).


Rabid dog fostered from a shelter

Yes, that’s an "oops," but it’s also not completely preventable.

A stray dog and her 6 puppies were sent to a foster home recently by a South Boston, VA animal shelter. It’s a common and logical thing to do, to get the puppies into a lower risk environment until they are old enough to be adopted. However, any animal with an unknown history is a risk, and that was a problem here, because the dog started to act abnormally after being fostered. She was subsequently diagnosed with rabies, and seven people (including, not surprisingly, the foster family) had to receive post-exposure prophylaxis.

Here are some comments from the article:

It takes about 10 days for an animal to start showing signs of rabies. Staff at the pound had no clue that the dog had rabies because it only stayed there for two hours.

The first point is incorrect. It can take much longer for an animal to develop signs of rabies. The 10 day window is what is used after an animal has bitten a person, because an animal that is shedding the virus will become ill with rabies within 10 days. However, the incubation time (i.e. the time from when an animal is exposed to the time it develops disease) can be months. So, a 10 day quarantine of new arrivals is good for some things, but doesn’t mean that the dog won’t develop signs of rabies later.

Staff sanitized the area.

This isn't really needed for rabies, because the rabies virus isn’t spread through contact with the general environment. It is certainly a good practice for the shelter overall, though, since there are presumably many other bacteria and viruses lurking in the shelter environment.

When an animal is brought in now, it’s monitored for signs of any disease.

That’s a common (and common sense) measure. However, it only helps with some, but not all, diseases. In this particular case, it may have helped the staff to identify this dog as being rabid before it was sent to a foster home (because it developed signs in less than two day), but it won’t prevent all cases like this from occurring. It’s a tough balance between monitoring for signs of disease and wanting to get the animal out of the shelter ASAP (because of shelter space issues, and to reduce the chance of the animal being exposed to something in the shelter, etc.). There’s no perfect approach.

“People need to get their dogs and cats vaccinated. You’re playing Russian Roulette when you turn the cat out at night and it doesn’t have the vaccine,” said Dan Richardson, the Environmental Health Manager for Southern Virginia.

Amen to that.

OAHN Podcast on Rabies for Ontario Veterinarians

The new Ontario Animal Health Network, developed as part of the OMAFRA-UofG partnership under the Disease Surveillance Plan (DSP), has produced a number of podcasts on important topics for veterinarians.  These podcasts are great for people on-the-go, as they can be downloaded and played anywhere on a portable device/phone, and they include discussions with experts from the Ontario Veterinary College, Animal Health Laboratory, OMAFRA and others.

The latest posting is a podcast on what Ontario veterinarians need to know about rabies.  This has been a hot topic since April 2014, when the Canadian Food Inspection Agency (CFIA) dramatically changed their long-time role in the national rabies response program.  There are two versions, including a full version and a slightly shorter version for small animal veterinarians (which simply leaves out some of the details for large animal cases).  Although the target audience is veterinarians, technicians and other veterinary staff may also find the information useful.

For more information about the Ontario Animal Health Network, visit the DSP homepage.  More information on rabies can be found on the Worms & Germs Resources - Pets page, and in our archives.


Reptile-associated salmonellosis in Minnesota

A recent paper in Zoonoses and Public Health (Whitten et al, 2014) describes reptile-associated salmonellosis cases in Minnesota between 1996-2011. Like similar reports, the data underestimate the problem because it’s thought that for every documented case, approximately 30 cases go undiagnosed. Regardless, there are some useful findings.

Twelve to 30 cases of reptile-associated salmonellosis were identified in the state each year. That represented  about 3.5% of all sporadic (non-outbreak-associated) cases.

  • This is lower than is often reported, but Minnesota is also known to have one of the lowest pet ownership rates among states, which might account for this discrepancy, at least in part.

Kids bore the brunt of disease (as is normal), with the median age of victims being 11 years. 17% were less than one year of age, 31% were less than five years of age, and 67% were under 20.

  • The very young kids presumably had little or no direct contact with reptiles. This highlights the fact that living in the house with a reptile is a risk factor, even if there’s no direct contact. That’s why reptiles shouldn’t be in the house if there are high risk people present (i.e. kids less than five years of age, elderly individuals, pregnant women, immunocompromised individuals). Just trying to keep the high risk people from having contact with the reptile isn’t enough.

23% of cases had to be hospitalized. Fifteen (5%) had invasive infections, where Salmonella made it out of the intestinal tract and into the rest of the body.

  • These types of infection are a major concern, and the report included one case where the bacterium was found in the cerebrospinal fluid (indicating the person presumably had Salmonella meningitis).

Fortunately, none died.

Over half of the people who got sick and who were asked (i.e. not including the young kids) reported knowing that reptiles can be sources of Salmonella.

Almost half reported exposure to a lizard, with 20% reporting snake contact, 19% reporting turtle contact and some reporting contact with more than one type of reptile.

A quarter of those who reported turtle contact and indicated the size of the turtle said the turtle was less than four inches in length.

  • That’s relevant because it’s illegal to sell turtles that small in the US.  The rule was put in place due to the increased risk of kids handling small turtles and getting exposed to Salmonella. The finding isn't surprising, though, since this law is widely ignored.

Some people consented to having their reptile tested. 86% of the tested reptiles were shedding Salmonella at the time the follow-up was performed. 96% of those were the same strain that caused disease in the person.

Overall, not a lot has changed, which is concerning. There’s a risk of disease with any pet contact, but reptiles are undeniably high risk. We’ll never completely eliminate the problem, but logical pet ownership and animal management are needed to reduce the risk. A good start is getting young kids away from reptiles. Reptiles can make great pets… but not for young kids, and not without some risk.

US dog importation and rabies vaccination

I’ve written a lot lately about importation of pets and associated infectious disease issues. A recent paper in the journal Zoonoses and Public Health (Sinclair et al, Dogs entering the United States from rabies-endemic countries, 2011-2012) provides some interesting data on this topic.

Dogs entering the US from countries where rabies is present must be vaccinated against this disease. If they are not vaccinated, the importer must sign an agreement that says the dog will be confined until it is fully vaccinated, i.e. 30 days after it receives its first vaccine. Dogs have to be at least 3 months old to be vaccinated, so any dog under that age must be confined until it is 3 months old, vaccinated, and then confined for an additional 30 days post-vaccine.

The study focused on dogs that had to be confined due to lack of rabies vaccination on entry to the US.

  • Over a 1 yr period, 2746 dogs were confined. That's a pretty impressive number of imported dogs considering this only accounts for unvaccinated dogs from countries where rabies is present.
  • Dogs originated from 81 different countries. Canada (21%), Mexico (13%) and Europe (30%) were the most common sources. Dogs from Mexico would be the greatest concern of these because of the presence of canine rabies in that country. Europe is variable risk, with rabies in wildlife and dogs imported from higher risk regions. It’s not clear to me whether some of these "European" dogs might have actually originated elsewhere and been funneled through Europe, which would make them higher risk as well.
  • 11.4% of the dogs came from South America, 8.5% from Asia and 1.2% from Africa. These are all higher risk regions.
  • Most (67%) were puppies less than 3 months of age (so too young to have been vaccinated.)
  • The nature of the movement of the dogs (e.g. how they arrived, where they arrived, from where they came) in comparison to human travel patterns led the authors to conclude that most were "entering the United States for increasing the dog supply", as opposed to people traveling with their own pets. 

One of their other conclusions was “Dogs unimmunized against rabies and coming from rabies- endemic countries (i.e. DPCAs) continue to be imported into the United States in considerable numbers. These DPCAs pose a demonstrated risk for re-introduction of canine rabies virus variant and may also pose risks for entry of other animal and zoonotic diseases.

If over 2700 unvaccinated dogs were brought into the country, how many dogs were brought in in total? How many of the "vaccinated" dogs were really vaccinated? (Since scrutiny is limited and faking a vaccine certificate doesn’t exactly take a lot of effort.) What other pathogens might those thousands of imported dogs been carrying? Finally, why import those dogs in the first place? There’s hardly a shortage of dogs looking for homes in the US...


Cat hoarding and rabies

Over 50 cats have been euthanized in Delaware, US, after rabies was diagnosed in one 4-week-old kitten.

The cats were mainly indoor cats owned by one person - a pretty classical case of cat hoarding. All were in very poor condition. There were vaccination records for 15 of them, but there was no way to figure out which record corresponded to which cat (e.g. "black cat" doesn’t help much when you have 30 black cats in the group).

Since all of the cats had to be considered unvaccinated and they were exposed to a rabid animal, that left two options: euthanasia or 6 month quarantine. The logistics and cost of a 6 month quarantine, along with the poor condition of the cats themselves (and probably concerns about finding adequate homes after quarantine) led to the decision to euthanize the group.

Sometimes, these decisions have to be made despite knowing that the true risk of rabies exposure was very low. However, that’s not the case here. There was one confirmed rabid kitten, but other kittens in the litter had already died by the time that one was tested. The others may have also had rabies. The kittens had to get rabies from something, and if they were indoor (which is probably the case here given the primarily indoor nature of this group and their age), that means the virus probably came from one of the indoor-outdoor cats or from the mother (no word on her health status), which means there were multiple potential sources of exposure for the larger group than the one kitten that tested positive.

In some ways, they got lucky here. The kitten was taken to a veterinary clinic, where it bit a technician. The clinic fortunately did things right and reported the bite, and the kitten was tested. Otherwise, this would not have been picked up and there’s a much greater chance that the owner or someone else would have been exposed, and possibly died.

Inadequate rabies vaccination of this group led to the deaths of 50 cats, expensive post-exposure treatment of a few people (the veterinary technician, an animal control officer who was also bitten, and likely the owner), and presumably a lot of time and effort investigating this.

This case, and other recent rabies diagnoses, is plotted on

More information about rabies is also available on the Worms & Germs Resources - Pets page.

2013 US rabies recap

It’s that time of year. No, not for snow (although it is snowing here at the moment). It’s time for the annual US rabies surveillance report in the Journal of the American Veterinary Medical Association (Dyer et al. Rabies surveillance in the United States during 2013).

The highlights…

  • Over 5800 rabid animals were identified in the US. 92% of those were wildlife. That’s going to be a profound underestimation since most rabid wildlife aren’t caught and tested, but it shows that rabies is still alive and well in the US.
  • Rabies was most commonly diagnosed in raccoons, followed by bats, skunks and foxes.
  • Among domestic animals, there were 247 cats, 89 dogs, 86 cattle, 31 horses/mules, 9 sheep/goats, 3 pigs, 2 llamas, and a partridge in a pear tree. (Obviously the last one’s my lame attempt at early winter humour. Birds aren’t a rabies concern).
  • Other species affected included mongooses (38; as always, just from Puerto Rico), groundhogs (37), bobcats (16), coyotes (5), deer (5), otters (3), opossums (2), wolves (2), marmots (2), a rabbit and a fisher. Most of those are fairly typical, both in terms of the species affected and the numbers. 
  • Pennsylvania had the most rabid cats, while Texas won for most rabid dogs.
  • Vaccination history was not usually available for rabid dogs and cats. None of the rabid cats had been properly vaccinated against rabies. One of the rabid dogs had been vaccinated, a 10-month-old dog that developed rabies 7 months after receiving its first dose. This one’s a bit concerning, though. By being vaccinated at 3 months of age, it would have been considered "up-to-date" on rabies vaccination and this would therefore be a vaccine failure. No vaccine is 100% effective (although rabies vaccine is considered very effective as vaccines go) and the dog having only received only one dose because of its age was probably a key factor. 
  • The dominant rabies virus variants had a typical geographic distribution (see map above).

Three people were diagnosed with rabies during the year.

  • The first was a person who died of raccoon rabies. There was no history of animal exposure, but he had received a kidney transplant 17 months earlier. The donor had been diagnosed with severe gastroenteritis, but also had some neurological abnormalities and when banked samples from the donor were tested, rabies virus was found. Three other organ recipients were then given post-exposure prophylaxis.
  • The second person was a man from Guatemala who was detained trying to enter the US. While in custody, he developed neurological disease and died. Central American canine rabies variant was identified.
  • I assume the third reported case was the organ donor from the first case, since the case was diagnosed in 2013 (even though the person died in a different year).

As per usual, there’s a little information about Canada and Mexico in the paper.

  • 116 rabid animals were identified in Canada, 88% of those being wildlife. There were also 12 cats and dogs (combined) and 2 horses.
  • In Mexico, an important finding was the fact that, for the first time since 1938, no people died of rabies. Eleven rabid dogs were identified. However, care must be taken in comparing data from different countries because of potential differences in testing (if you don’t look too hard, you don’t find).


Lyme disease & ticks: New infosheet

The latest Worms & Germs infosheet, all about Lyme disease and ticks, is now available on the Resources - Pets page.  Although it's getting colder and occasionally snowy up in Ontario, there are lots of parts of North America where ticks are active all year round.  It's particularly important for any "snowbirds" who may travel south with their pets over the winter to be aware of the potential for exposure to ticks and the diseases they transmit (not just Lyme disease!), and to make sure their pets (as well as they themselves) are properly protected.  (The same goes for exposure to mosquitoes, which can transmit (among other things) heartworm.)

Remember that dogs (nor any other mammal for that matter) cannot transmit Borrelia burgorferi, the bacterium that causes Lyme disease, to people; however, this is a good example of a "one health" disease that clearly affects both people and animals.  Finding the disease in one species is an indication that the other is at risk as well, when there is exposure to a common source (i.e. the ticks).

Thanks to University of Guelph professor and parasitologist Dr. Andrew Perigrine for his input on the infosheet as well.

Image: A female blacklegged tick, Ixodes scapularis, engorged with a host blood meal. (Source: CDC Public Health Image Library 15993)

Skunk + late vaccine + inflexibility = dead dog

A Brockton, MA dog was euthanized after being bitten by a rabid skunk, because of a combination of the skunk's rabies diagnosis, a relatively minor lapse in the dog's vaccinations, and regulatory inflexibility. The ten-year-old Schnauzer cross was bitten in its own yard, and the skunk was subsequently caught, tested and diagnosed as rabid.

Clearly, this needs to be considered rabies exposure. But, what needs to be done?

  • If the dog was up-to-date on its vaccines, it would receive a booster vaccination and be subject to a 45 day observation period (typically at home).
  • If unvaccinated, it would be boosted and quarantined for 6 months, or euthanized.

However, a dog doesn’t suddenly go from protected to unprotected immediately after the 1 year or 3 year vaccination duration passes. One year and 3 years are nice easy dates to remember and vaccines are known to provide that degree of protection because they've been tested at these intervals.  However, since vaccine-induced antibodies aren’t programmed to self-destruct on a specific "best-before-date", there’s a grey area with animals whose vaccination has lapsed by only a short period. Here, the dog was two weeks overdue - immunologically probably almost identical to what its protection status was at the time its vaccination lapsed.

“It is really sad. My heart goes out to the animal’s owner,” Animal Inspector Megan Hanrahan said. “But those two weeks make the animal not covered.”

Yet, it’s not that clear-cut. NASPHV guidelines state “Animals overdue for a booster vaccination should be evaluated on a case-by-case basis based upon severity of exposure, time elapsed since last vaccination, number of previous vaccinations, current health status, and local rabies epidemiology to determine need for euthanasia or immediate revaccination and observation/isolation."

It’s definitely grey, and being bitten by a rabid skunk is concerning, but a ten-year-old dog that was two weeks overdue (and hopefully previously vaccinated many times over its life) certainly deserved some consideration of this grey area. I think a 45-day observation period would be entirely justifiable here.

Regardless, this is a good reminder of why people need to pay close attention to vaccination dates and ensure that their animals are properly covered at all times (and, no, testing antibody titres does not replace the need for vaccination).

Photo credit: (click image for source)

More on Ebola

Since I’ve spent most of my day answering questions about Ebola, here are some of the common Q&As.

Can dogs be infected with Ebola?

Yes, but what that really means is unclear. Most of the available information comes from a study in Gabon where they tested dogs in a community during an Ebola outbreak. They found antibodies against the virus in a large percentage of dogs. That’s not really surprising, as these dogs were apparently scavenging bodies of people and animals that had died from Ebola. So, it’s not hard to see how they’d be exposed.

Having antibodies against the virus means the virus got into their body and the body mounted an immune response. That doesn’t mean the dogs got sick or that they were shedding the virus. In that study, they could not find evidence of the virus in the dogs’ bodies. That doesn’t mean it was never there at relevant levels, but they couldn’t find it at the time.

Can dogs infect people with Ebola?

That’s the big question. Dogs can get infected (see above), but IF the virus can reproduce in a dogs and IF the virus is then present in adequate levels in blood and other secretions, THEN there would be the potential for dogs to be a source of human infection. That’s a lot of IFs for which we don’t have good information.

What do I think?

I think the risk of transmission of Ebola from dogs is very low. There’s currently no evidence that dogs have an important (or any) role in transmission of the virus in natural situations. It’s not zero risk (there aren’t many "it can never happen" situations with emerging diseases), and considering the how deadly the disease is the measures that can be used to mitigate that risk (small though it may be) are important.

So, how can we reduce the risk with an exposed dog?

Basically, treat the dog the same way you would treat a person with Ebola exposure or infection. An exposed person is quarantined and monitored for signs of disease. People are not infectious until they are sick.  A sick person is handled with strict infection control precautions because of the potential that the virus is present in various body secretions.

With a dog, it’s probably warranted to err on the side of caution and treat an exposed dog like an infected person. Why? Because we don’t know that dogs are not infectious until they’re sick. So, it might be best to have them isolated and handled with strict biosafety practices, rather than just watch them at home (particularly given the potential for the dog to escape the house).

Is that degree of containment practical?

Maybe. It depends on the facility, personnel and motivation. Last week, I sketched out a containment plan for our facility in case we had a suspect case. It was done knowing there’s virtually no chance it would be needed, but it was a good mental exercise to consider what to do. The more you think about it, the more complex it can get. Containment is possible for a good facility with reliable personnel and a clear containment plan. However, you can’t just drop the dog off at any kennel, shelter or veterinary clinic and say "we’ll be back for it in 21 days." You need the right facility and personnel, and access to that will be variable.

Ebola kills dog...indirectly

There’s prudence and then there’s "let’s kill it so we don’t have to think about it."

The Spanish response to Ebola in a nursing assistant is a demonstration of the latter. Health Officials in Spain have obtained a court order to "euthanize and incinerate" the dog owned by a nursing assistant who was infected with Ebola virus while caring for a Spanish priest who acquired the infection in Sierra Leone. The case has received a lot of attention, as the first case of Ebola from this outbreak that was acquired outside of Africa.

There’s obviously cause for concern and prudence, and the woman’s husband is logically in quarantine. However, euthanasia of the dog seems like overkill. Yes, we have to be careful. But we don’t need to overreact.

The odds of this dog being infected are very, very slim. Even if the dog was infected, there is no evidence that dogs are a source of infection. The concern about dogs has been around dogs eating carcasses of other animals that have died of Ebola virus infection, and direct contact with people with active disease. In one study in a village in Gabon during an Ebola outbreak, a large percentage of dogs had antibodies against the virus, indicating exposure (Allela et al, Emerging Infectious Diseases 2005). But, exposure doesn’t mean the dogs were ever able to transmit the virus, and eating a body full of Ebola virus is very different from living in the house with one person in the early stage of infection.

I’m not saying transmission from a dog in some form or another is impossible, or that no precautions are required for pets that have been in contact with an infected person. In some ways, it’s good to see animals considered in this scenario. However, why not take the opportunity to quarantine and test the dog to see if it was infected? That would be better for the dog, for its owner, and for the next time the situation occurs. You can’t answer all the questions with one dog, but you can start to gather information. Euthanasia is the easy knee-jerk approach that removes all risk, but there are ways to house and monitor a dog for a few weeks with no contact. Since Ebola virus is spread by direct contact with infectious body fluids, it’s containable with good facilities and appropriate precautions. To me, that would have been a better approach from many aspects.

Ebola: precautions and paranoia

Awareness is good.

Being proactive is wise.

Being paranoid? That’s another story.

As this unprecedented Ebola virus outbreak in West Africa continues to expand, many people in North America have journeyed from ignoring it, to considering it a disease that you only get if you’re in Africa, to thinking they need for move to some remote island and live in a bio-bubble to avoid it.

With news reports of people being quarantined in North American hospitals because they returned from West Africa with a fever, and with a confirmed case in a person who travelled from Liberia to Dallas, some people are freaking out. Among the frequent alarmist responses is a demand for a full ban on any travel from West Africa (or even Africa as a whole, from people who don’t realize the distance from Liberia to South Africa is over 5000 km, similar to the distance from New York to Alaska).

With a virus that is relatively poorly transmissible and only transmitted when people are symptomatic, reasonable travel controls and attention by healthcare workers (a big "oops" occurred in Dallas in this case) should prevent this virus for establishing any kind of foothold in North America.

People need to put things in perspective. Most likely, there will be no locally transmitted North American Ebola deaths this year. At the same time, tens of thousands of people in North America will die from seasonal flu.

...I wonder how many of the people screaming for a lock-down on Africa got a flu shot last year.

More hatching chick associated salmonellosis

The salmonellosis outbreak in the US associated with hatching chicks continues to expand. The outbreak, ironically associated with Mt. Healthy Hatcheries in Ohio, has now sickened at least 344 people in 42 US states and Puerto Rico with a variety of Salmonella serotypes (S. Infants, S. Newport and S. Hadar). The outbreak shows no sign of abating, with another 42 cases identified in the past 6 weeks.

As is often the case, young people are more often affected, with 33% of sick individuals being 10 years of age or younger. Thirty-two percent of infected individuals have been hospitalized.

Unfortunately, the regulatory response in situations like this is most often to give places like the hatchery in question "guidance" as opposed to imposing mandatory measures. However, this is really a "buyer beware" situation, in which people purchasing hatching chicks need to be aware of the high risks associated with young poultry, and take appropriate precautions to manage them. While Salmonella-free eggs and chicks would be ideal, it’s not particularly realistic.  People need to be more proactive themselves and listen to established infection control practices, which include keeping kids less than five years of age away from young poultry.

Hopefully schools will pay attention to these recommendations when they’re planning their annual (and often poorly managed) hatching chick activities in the spring.

More bad news on the MRSP front

Well, "news" perhaps isn’t the best description since we’ve been seeing it for a while, but a paper in an upcoming edition of the Journal of Clinical Microbiology (Gold et al. 2014) entitled "Amikacin resistance in Staphylococcus pseudintermedius isolated from dogs" provides published support for the trend we’ve been seeing.

Staphylococcus pseudintermedius is an important cause of infections in dogs, and a resistant form, MRSP (methicillin-resistant Staph pseud) is a major problem. MRSP also does a great job of becoming resistant to additional antibiotics, usually by picking up resistance genes from other bacteria. We’ve rapidly lost most of our typical antibiotic treatment options for many MRSP strains, and are left with only a couple of viable drugs. One of those is amikacin, an antibiotic we try not to use when we don’t have to because it has to be injected, and because it can be hard on the kidneys. However, it’s literally a lifesaver in some cases.

Over the past year or two (unsurprisingly, really), we’ve been seeing some amikacin resistance in MRSP strains. I say that’s unsurprising because, with bacteria in general (and MRSP in particular), we’re trapped in a game of "use it and lose it." Any time we use an antibiotic, there is some potential for resistance to develop.

The study by Gold et al looked at 422 Staph pseud from dogs, and found that MRSP were significantly more likely to be amikacin resistant, with a rather astounding 37% amikacin resistance rate in their MRSP collection. Amikacin-resistant strains were also more likely to be resistant to a range of other antibiotics, regardless of their methicillin-resistance.

What do we do?

Tough question. Bacteria eventually seem to outsmart us most of the time (or we seem to "out-dumb" them, since it’s often our poor use of antibiotics that leads to problems).

So, what can be done?

Prevention is better than cure: MRSP infections are almost invariably secondary problems. Preventing or limiting underlying disease (e.g. controlling allergic skin disease) can greatly reduce the number of infections and the amount of antibiotics used to treat them.

Infection control: MRSP surgical site infections are increasingly common, and using good infection control practices should help limit them.

Use them right: Making sure drugs are given as prescribed with proper dosing (amount and frequency), and limiting the use of the few remaining MRSP treatment options for cases that really need them are important.

Antibiotic alternatives: Antibiotics aren’t always needed to treat infections. Topical therapy with things like chlorhexidine shampoo can be highly effective for skin infections, and can save antibiotics for infections that can't be treated otherwise.

Will these steps stop the scourge of antibiotic resistance?

No. But they might buy us some more time to figure out how to better handle this and to save some of our limited remaining antibiotic options.

Never a simple story: West Nile in California

Orange County CA is currently experiencing a major outbreak of West Nile infection in people. Since January 94 cases have been confirmed, three of which were fatal, representing nearly a quarter of the 400 cases reported across the country so far this year. The number of cases of infection with a mosquito-borne virus like West Nile (or EEE, which we’ve been seeing over the last month in Ontario horses) can be affected by a lot of factors, including climate/weather, flooding or drought, bird populations and movements, mosquito populations and local mosquito species, and population density of those affected, be they people or animals.

Often we associated wet weather and flooding with increased incidence of diseases like West Nile, but this year California is experiencing a drought. How does that make sense? It’s been suggested that the dry weather is driving birds into more populated areas to look for water. More infected birds in the area provides more opportunity for mosquitoes to bite the birds and then transmit the virus to a person. The number of mosquito pools testing positive in Orange County (80%) is the highest its been since West Nile first hit California a decade ago, and 6.5 times more dead birds (260 total) have tested positive for WNV compared to 2013.

Most of the human cases in California included some signs of illness. When you consider that 80% of people infected with WNV show no signs of the disease, that means there has actually been an even larger number of people actually infected.

The impact on the local horse population has not been mentioned, but it is unlikely that horses will escape this outbreak unscathed. After a relatively slow year for WNV in 2013, I wonder how many horse owners in the area may have decided to forgo vaccinating their horses this year, and may now be regretting it. It’s easy for us to get complacent about infection control when things are going well. In the case of West Nile, people may stop taking precautions to avoid mosquitoes, to remove standing water from their property, and vaccinating their horses. It’s important to remain vigilant though, because there are so many different factors involved in the cycles of various diseases that predicting their resurgence can be extremely difficult, if not impossible. Taking some simple preventative steps, and making basic infection control practices habit can help reduce the impact of unexpected outbreaks, and help keep everyone (people and animals) healthier and safer.

Monkey bites and rabies quarantine

"A monkey was placed under a six-month quarantine on Tuesday after it reportedly bit a woman at a Beaumont restaurant on Sunday..."

Oh, where to start...

  1. Why do people feel the need to have monkeys as pets? I realize that they’re fascinating critters, but is it in the best interests of the monkey and the public? (Generally no...)
  2. Why is a pet monkey in a restaurant? Actually, here, it was three monkeys. I have fewer issues with dogs in restaurants since a well trained dog would just sit quietly on the floor. I doubt that the average monkey is going to do the same. Add two more monkeys to the mix and there's not a chance. In this case, problems started when one of the monkeys took off and ran under a parked car.
  3. Why does a monkey that’s allowed out in public bite? I know that extreme circumstances occur and that you can’t 100% guarantee that bites won’t happen, but monkeys tend to bite more than the average pet. That’s just the way they are. As such, why are they out in public? In this case, after one of the monkeys took off, they were retrieved by another person, who was ultimately bitten when she returned to the runaway monkey to her owner.
  4. Why a six month quarantine? Someone definitely dropped the ball here. After an animal bites, there’s supposed to be a quarantine period to give the animal time to develop signs of rabies if it was indeed able to transmit rabies at the time of the bite. That takes a matter of days. A 10 day quarantine or observation period is the standard approach for dogs, cats and ferrets (since we know more about how rabies progresses in those species). For other species, where less is known, the default response on paper is often euthanasia and immediate testing for rabies, but in practice, a 10-30 day observation period is usually applied. California (where this incident occurred) guidelines are consistent with this and state “While isolation of biting animals other than dogs, cats, and ferrets is not recommended for the reasons given above, local health officers have the prerogative to forego euthanasia and testing in rare special circumstances. If the biting animal has a comprehensive and reliable history that precludes opportunity for exposure to rabies virus, and the risk of rabies in the biting animal is judged by the health officer to be acceptably low, the health officer may institute a prolonged (30-day) isolation of the biting animal."

Like many other aspects of this situation, a six month quarantine just doesn’t make sense.  In contrast, if the monkey had been bitten by a potentially rabid animal (for example, a bat), then it would require a six month quarantine to ensure it had not become infected by being bitten.  The difference between the two kinds of quarantine periods is frequently misunderstood.

Image: A 19th-century organ grinder and his capuchin monkey (click image for source)

Stinky dogs and rabies questions

I’ll admit it - I don’t understand dogs. How is it that they have this incredibly well-developed sense of smell, but my dog feels it necessary to roll in the most disgusting smelling things he can find? I guess it’s not that he feels like he needs strong body odour, just that he has a poorly developed part of the brain that says “hey, that smells gross” (along with related parts of the brain that say “hey, that tastes gross,” “maybe I shouldn’t chase that skunk,” and “maybe body slamming the side of the bed to scratch my back at 4 AM doesn’t endear me to the people that feed me.”).

Anyway, that’s a pretty indirect introduction to a question of what animals can track back into the household and other unusual routes of zoonotic disease exposure. I won’t get into the whole issue, but I have had a rash of calls lately from people worried about indirect exposure to rabies virus. Questions have include:

  • My dog was nosing raccoon roadkill. What if the raccoon had rabies?
  • If I run over an animal and then touch the tire, could contract rabies?
  • If someone who works removing bats from houses comes over, could they have rabies virus on their shoes and contaminate my house?

For someone to get rabies, the virus has to go from the infected animal’s body (saliva or nervous tissue) into the person’s body. Rabies virus isn’t airborne, it doesn’t survive long in the environment and it can’t infect through intact skin. Indirect transmission of rabies is exceedingly rare, with one of the only examples that comes to mind being rabies in a family of shepherds who cared for a sheep that was attacked by a rabid wolf. The attack occurred right before the people handled the sheep, and wolf saliva (containing rabies virus) was likely present on the sheep’s coat from the attack, and the handlers had cuts on their hands. Very rare.

That said, with infectious diseases we rarely say "never." That often causes angst because people want to hear “there’s absolutely, positively no way you could have gotten [insert disease here] from [insert event here].” Yet, there are situations that are so unlikely that we probably should take the plunge and just say "never."

For example, is there a theoretical chance that an animal run over by a car would be rabid, and that brain tissue would be splattered on the tire, and that it wouldn’t be killed right away by heat from the tire, and someone would touch the tire right after and that person touched a virus contaminated area of the tire and the virus had contact with an open wound?

Sure, I guess...

However, while rabies post-exposure treatment is very safe, the odds of an adverse effect of post-exposure treatment are probably infinitely higher than the odds of getting rabies in weird situations like those about which we are sometimes asked. Considering how well rabies cases are tracking in developed countries, and how many wild animals have rabies, if indirect exposure was a real concern, we’d know about.

(click image for source)

Superbugs and import control

Issues about infectious disease risks from the pretty much totally unregulated importation of dogs continue to rise, and I’m dealing with them in one way or another almost daily at the moment. I’ll stay away from the discussion of what we are and aren’t (mostly the latter) doing in Canada, since I've covered that before.

What I want to write about now is a push in New Zealand to ban entry of dogs carrying methicillin-resistant (MR) staphylococci, including MRSA and MRSP.

The push makes sense at some levels:

  • MR staph infections are a problem
  • MR staph are currently rare in pets in New Zealand
  • We can find the same strains of MR staph in animals multiple countries, suggesting they do travel from place to place
  • Prevention is better than treatment

However, it’s not that clear cut. One issue relates to the standard line “all staph are not created alike”. Methicillin-resistance is common in a wide range of staph species carried by perfectly healthy animals. Many of those species are of little to no risk to people or animals.

A related issue is how MR staph get into a dog population. There are a few main ways. One is from humans - MRSA and other MR-staph are present in people, and most MRSA in pets is human-associated. So unless there’s a parallel extermination of these bugs in humans in New Zealand (a rather unlikely scenario), there’s an ongoing risk of exposure of native dogs.

Another snag is transmission of methicillin-resistance from common resident staph species to species that cause disease. While MR-staph infections may be very rarely identified in the country, it’s very unlikely that there are no MR-staph of any sort in New Zealand. I’d wager that I could find MR-staph of various sorts in New Zealand dogs, so this risk would remain even if dogs being imported were restricted.

Feasibility and practicality are other concerns. Yes, dogs could be tested and held at the border or in a quarantine facility awaiting results, but what would be tested, and how? How the testing is performed (e.g. what samples are collected and what lab methods are used) can have a major impact on the results. We don’t actually know how to confidently declare a dog to be free of MR-staph. If I had to make a recommendation now, it would be to take swabs of the nose, throat, rectum, skin and area around the hind end (perineum), and test each swab using an enrichment culture method. Since the two main staph of concern, MRSP and MRSA, behave differently in the lab, two different approaches would be required. Further, I wouldn’t have complete confidence in one round of testing, so I would probably want that done at least twice. It's possible but it wouldn't be cheap or easy… and you still won't get me to sign anything saying this will "guarantee" that a dog is free of MR-staph.

Ultimately, trying to prevent entry of MR-staph is rather futile, and it also doesn’t address the bigger issues, such as how antibiotics are used, infection control practices and other components of veterinary care that influence the spread of MR-staph. While I applaud the fact that they’re being proactive by thinking about ways to control these bugs, and that they're paying attention to importation, import controls aren’t going to be a great tool for MR-staph control. Paying attention to judicious use of antibiotics, use of common-sense hygiene practices in households, improvement in infection control practices in veterinary hospitals, and good basic veterinary care for pets would be much more effective.

More on rabies and roadkill

A reader recently posed a question about the potential risk of rabies virus exposure from running over a rabid animal. I get the "can I get rabies from touching roadkill?" question regularly, but this person had a different concern.

The other day I accidentally plowed right over an already-dead animal in the road. My air conditioning was blasting right on my face at the time. I am sure that something could have splattered under my car. Moreover, there could be a weakness or opening in my AC system that would allow the rabies virus to enter.

We typically shy away from saying "never" with infectious diseases, but this would be as close to a "never" situation as you can get.

For this to be a concern:

  1. the animal would have to be rabid
  2. brain tissue and saliva containing rabies virus would have to be aerosolized
  3. virus particles would have to make it past the air filters...
  4. ...and then come into contact with mucous membranes (e.g. mouth, eyes) or open skin lesions.

That’s just not a realistic concern. Non-contact-associated transmission of rabies is very rare and concerns are mainly limited to labs where large quantities of virus are manipulated, and people entering highly-infected bat caves.

Rabies is not an airborne virus, and beyond direct contact concerns would only relate to aerosol/droplet transmission, something I describe as "splash zone" transmission. Even with poor or absent air filters in the car, droplets aren’t going to make it through the whole ventilation system to the driver's body.

The reader's final question: “Or are you laughing while reading this?

Trust me, I get stranger questions on a daily basis.

Raccoon rabies...what is exposure?

A recent report about a rabid raccoon in New Brunswick highlights a few different issues regarding rabies exposure, and the marked differences in application and interpretation of various guidelines.

The incident occurred in St. Stephen, New Brunswick, where a family came home "to find their 2 dogs excitedly circling around something in the yard. The object of attention was a raccoon, which evidently was moving abnormally slowly and was circling. The raccoon was killed and buried. Afterward, the dogs shared popsicles with the family's 2 young children. It was not known if the dogs had had contact with the raccoon, but if they had been bitten, it is likely that they would have licked any wounds they incurred and so could have been exposed to the raccoon's saliva. The raccoon was dug up and its brain was extracted by the New Brunswick Provincial Veterinary Laboratory and sent to the Canadian Food Inspection Agency Rabies Laboratory in Ottawa for testing. Test results were completed on [2 Jun 2014] and variant typing was completed on [3 Jun 2014]."

I’m a little surprised the CFIA tested the raccoon. Often (usually), it’s difficult to get testing done without clear evidence of exposure of either a person or a domestic animal. Here, it doesn’t sound like there was much evidence that the dogs had been exposed. I’m not saying don’t test - I think over-testing is better than under-testing, as long as results are interpreted properly. 

"Post-exposure treatment has been started on the 2 children. Both dogs had been vaccinated previously against rabies, although one dog was overdue for revaccination. Both dogs were given booster vaccinations for rabies and have been put under quarantine. The family also has an indoor-outdoor cat which had never been vaccinated against rabies. The cat was vaccinated and also is being quarantined."

It seems like a big stretch to call this exposure of the kids. If the dog bit the raccoon, it’s very unlikely there would be rabies virus in the dog’s mouth, although it’s possible if the dog and raccoon swapped saliva during the process. However, rabies virus would then have to survive in the dog’s mouth, contaminate the ice cream, survive on the ice cream surface and make its way into the kids through the ice cream. To say that’s unlikely is very much an understatement. Again, I’d rather see erring on the side of caution when it comes to rabies, but unless there’s more to the story, this seems pretty extreme.

Considering the indoor-outdoor cat exposed seems even stranger, since there’s no information reported here that the cat was involved in the raccoon incident at all. Since exposure of an unvaccinated animal means a 6 month strict quarantine, that’s a very drastic measure for a situation like this.

Maybe something’s not being reported, but it seems a bit weird to me.

Some general take home messages: 

  • Stay away from wildlife.
  • Think about rabies when there are encounters with wildlife, especially wild animals that are acting strangely.
  • Vaccinate your pets (even the indoor ones!)

It's also worth noting that this was the first rabies-positive raccoon found in New Brunswick since 2002.

Rabies myth-busters 101: Cats and bats

Rabies is a very serious disease.  We're very lucky in Canada that in most parts of the country the prevalence of this disease is now quite low, in large part due to wildlife control and vaccination efforts.  Unfortunately that also seems to make some people quite lax when it comes to (common sense) things like vaccinating their pets and avoiding direct contact with rabies vectors such as foxes, skunks, raccoons and bats.  Here are some of the most common misconceptions (or lapses in judgement) that we encounter.

1. My cat never goes outside, so it doesn't need to be vaccinated for rabies.

FALSE.  False false false.  It seems to be very difficult to get this message across to pet owners.  Your cat may live inside, but cats can escape.  Even my own cat, who has lived indoors his entire life for more than a decade, one day suddenly decided to explore the great outdoors.  Was I ever glad he was vaccinated at that point!  Even more importantly, bats - currently the most common rabies vector in most parts of Canada - can get into your house.  This happens even in the middle of large cities, and to people who live in apartments.  If your cat is unvaccinated and happens to have contact with a bat that gets in your house, kitty could be facing a 6-month quarantine which is not easy or fun for anyone.

2. My cat had all its shots when it was a kitten, so it's protected.

FALSE.  Cats (and dogs, and ferrets) need at least TWO rounds of rabies vaccination before they are considered fully protected.  Generally they get one dose at 3 months of age (with their last set of puppy/kitten shots) - 30 days later they are considered "primarily vaccinated".  The animal then needs a booster 1 year later (regardless of the type of vaccine used) at which point it is then considered fully vaccinated for 1 to 3 years, depending on which vaccine was used.  As soon as that 1 to 3 year window expires, kitty once again faces a 6-month quarantine if it is potentially exposed to rabies, which is just what happened to a dog in North Carolina recently.

3. If I have a bat in my house, I should get rid of it as soon as possible.

MAYBE. If you see a bat fly into your house through a door or a window, you can definitely try to shoo it back out as soon as possible as long as you don't touch it (lots of people use things like tennis rackets or brooms for this, but remember you don't need to hit the bat).  If you're not comfortable with that, trap the bat under a big bowl or bucket, or in a closed room with no animals or people, and call animal control (or a friendly neighbour) to help you with it.

BUT if the bat has touched any person or if there is a chance that your cat (or dog) may have touched the bat or been playing with it do not let the bat escape.  A risk assessment needs to be performed in these cases to determine if the amount of contact with the bat could have been enough to transmit rabies virus.  If the answer is no, the bat can then be released, but if the answer is yes, then it is very important to keep the bat so it can be tested for rabies.

Have your pets vaccinated for rabies by a veterinarian on a regular basis.  Make sure they are up-to-date and that you (or your veterinarian) have the records to show it.  It is by far the best insurance for preventing rabies in your pets, and avoiding unpleasant, long and difficult quarantine periods.  It is now summer in Canada and wildlife (including bats) are active - don't wait, get your pets updated today.


Salmonella from bearded dragons...Canadian style

Not surprisingly (since bacteria don't respect borders), the Salmonella Cotham outbreak in the US associated with bearded dragons has also affected people in Canada. Nine cases of human salmonellosis associated with this rare Salmonella strain have been identified, many with a link to bearded dragons.

It's not particularly remarkable, but should be yet another reminder of the need to take care with reptiles, because they are such common carriers of Salmonella.  Remember that basic hygiene and common sense (like keeping reptiles away from any and all food preparation areas, like the kitchen) go a long way to reducing the risk of disease transmission from these critters.  High-risk individuals (young children, elderly, pregnant or immunosuppressed) need to be extra careful, or ideally just stay away from reptiles and other high-risk animals.

Deja vu...Salmonella and feeder mice

In some ways, it doesn’t surprise me because it’s happened many times before. However, you’d think that, at some point, things would start to improve.

Apparently not.

The US CDC is reporting yet another outbreak of salmonellosis associated with contact with feeder mice, that is, mice produced commercially to feed to pet reptiles. Sadly, this outbreak is quite similar to previous outbreaks. Multiple people (37 confirmed so far) in multiple US states (18 so far) have become ill, and 15% of affected people were hospitalized.

Investigation of the outbreak led to Reptile Industries Inc, which sells mice through PetSmart under the brand name Arctic Mice.

As I mentioned a few days ago about a salmonellosis outbreak linked to a company that sells eggs for hatching chicks, there seems to be no ability or effort (not sure which one is the case) to do anything about the source of these outbreaks. The FDA has issued a notice that “In the absence of a voluntary recall from Reptile Industries, Inc, FDA issued a warning to pet owners who have purchased frozen rodents packaged by Reptile Industries, Inc since 11 Jan 2014 that they have the potential to be contaminated with salmonella. Reptile Industries, Inc packages frozen rodents for PetSmart stores nationwide and are sold under the brand name Arctic Mice.

The issue may be that these mice are not being sold as human food, so there’s no ability to mandate a recall. Yet, people are clearly getting sick from them, so it makes no sense that a recall and careful investigation of the facility and its practices is not underway. People purchasing feeder rodents need to remember:

  • Freezing doesn’t kill Salmonella.
  • Frozen rodents can be (and often are) contaminated with Salmonella and presumably various other pathogens.
  • All feeder rodents should be considered contaminated and basic hygiene practices should be used when handling them at all times. This includes storing them away from human food, thawing them in sealed containers in a manner that won’t contaminate human food or food-preparation surfaces (including the kitchen sink), and hand washing after contact with rodents or packaging.

Rabies confusion and clarification: Ontario

Following the Canadian Food Inspection Agency's (rather mind-boggling) abandonment of the rabies response portfolio, there's been a scramble by provinces to figure out what to do. The CFIA will still perform testing, but will not have any role in sample collection, sample shipping or investigation. I'm not sure what most provinces are doing (and based on the calls I get from people in different provinces, I'm not alone) but in Ontario, a lot of effort has been put into working out a new system. Ontario's Ministries of Health and Long-Term Care (MOHLTC) and Agriculture and Food (OMAF) have taken on different components of the void left by CFIA. A lot of work has gone into this transition, but there's still a lot of confusion (and some misinformation).

Click here for a useful summary for veterinarians on the current situation, as provided by OMAF.

Rabies three ways

Not many days go by when I don’t get a few calls about rabies. Here are a couple from yesterday that highlight some important issues.

An indoor cat tangled with a bat. The bat’s no longer around to test so this is considered a potential rabies exposure (bats being important rabies vectors, and catching and snacking on a bat being a potential way to encounter the virus). Unfortunately, the cat was not vaccinated against rabies, meaning it needs a strict 6 month quarantine, or euthanasia. A cheap and easy rabies vaccination would have significantly reduced the issue, changing that to a 45 day observation period, and greatly decreasing the risk that the cat would develop rabies. Indoor cats need to be vaccinated. Even if the cat never goes outside, rabies virus can find its way inside (and the number of indoor cats that get into fights with wildlife or hit by cars indicates that indoor cats aren’t always indoors!). I have personal experience with that.

A horse in Texas was diagnosed with rabies. Rabies is uncommon in horses but it certainly occurs. As above, rabies vaccination is cheap insurance. No vaccine guarantees protection but it’s a very effective vaccine, a fatal disease, and horses with rabies have attacked and killed people. Every horse (in or traveling to any rabies-endemic country) should be vaccinated against rabies.

Additionally, various (continuous) reports of rabies deaths in India also highlight the importance of controlling rabies at the population level, to reduce the risk of exposure by reducing the number of rabid animals.  There is also an absolutely critical need for healthcare providers to properly handle potential rabies exposures.

The Texas rabies case can be found on Worms & Germs Map (, along with some other recent cases.

It's that time of year...

April showers bring May flowers.
…and I can’t come up with a good rhyme for salmonellosis.

Nonetheless, it’s Salmonella season, courtesy of cute but biohazardous baby poultry.

You can buy chicken, turkey and other bird eggs to hatch every spring. Our local feed mill had the order forms out a while ago, and you can also buy them over the internet. Some schools still buy them.

The problem is baby poultry are high risk for shedding Salmonella (and Campylobacter, another problematic bacterium). Every year, outbreaks of disease in people occur from contact with hatching chicks, so the message isn’t getting around or getting through to people.

In the latest CDC report, 60 people in 23 US states have been diagnosed with salmonellosis linked to a single hatchery that "has been associated with multiple outbreaks of salmonellosis linked to live poultry in past years, including in 2012 and 2013." (How many outbreaks does it take to tell you your company is probably doing something wrong, or in the wrong business?)

The figure of 60 infected people is probably an underestimate, since it’s expected that many people were probably sick but didn’t go to a doctor or submit a stool sample for testing. Of the 60 diagnosed cases, 31% ended up hospitalized, re-enforcing that fact that this is a serious problem.

While the hatchery said they are “working collaboratively with authorities at the Ohio Department of Agriculture and CDC as they proceed with their investigation,” the Ohio Deptartment of Agriculture tellingly stated “The more accurate description of our relationship with that company has been we have tried to provide guidance through the years, but I don't know how many of the recommendations that we have brought to them have actually been implemented.”

Sadly (and bizarrely, from my standpoint) the agiculture department doesn’t have any authority to require the hatchery to implement recommended changes. "We're trying to tell them what they need to do in order to keep this from happening every year." How many people does one company need to sicken before they are forced to do things right (or shut down)?

This report shows a few things.

  • Some people just don’t learn (sellers and buyers alike)
  • Regulation of animal production for sale to the general public is horribly lax
  • Contact with young poultry is a major risk factor for salmonellosis.
  • The industrial scale of production of eggs for hatching chicks (and some pet species) means that a problem with a single facility can lead to widespread disease.
  • It’s a "buyer beware" world. Don’t trust that the critter you just bought is pathogen free, and take measures to protect yourself.
  • High-risk individuals should not be around hatching chicks because of the risk of salmonellosis. This includes kids less than 5 years of age (a key target group for sellers), elderly individuals, pregnant women and people with compromised immune systems.

Photo copyright: piep600 / 123RF Stock Photo

Boo Boo gets pardoned, but so much for stress relief

Let’s put this one in the "smart people doing stupid things" file.

Some well-intentioned people at Washington University in St. Louis thought they'd help relieve stress during exam time by bringing in a petting zoo - that unfortunately included "Boo Boo" the biting bear. As you can likely guess, problems ensued.

18 students sustained skin-breaking bites from Boo Boo.

  • You’d think someone would clue into there being an issue after, say, a few bites. Once it hit a dozen, I would have thought anyone with common sense would get concerned. But 18??? Did they even pull Boo Boo out of the petting zoo by then, or did he just get tired of biting people? (Or did he simply run out of willing victims?)

Local public health officials originally mandated euthanasia and rabies testing.

  • Because Boo Boo is a wild animal species, there are no quarantine provisions after potential rabies exposure. Because of that, standard guidelines are to euthanize the animal for rabies testing. This didn’t go over well (not surprisingly), and they eventually relented. From a practical point, it’s reasonable since Boo Boo’s not likely rabid, he’s just not a good petting zoo critter. However, the decision was probably more PR than science and they’ve gone against standard rabies prevention practices. This is one reason why wild species aren’t supposed to be in petting zoos.

It was reported that "This year, without the university's prior knowledge, the petting zoo included in the experience a 2-month old bear cub,"

  • Easy way to deflect blame but no excuse. The University brought in the animals. They had a duty to know what was happening.

Petting zoos can be fun and entertaining. Bear bites and rabies scares aren’t. A little common sense goes a long way. Unfortunately, common sense isn’t always very common.

Salmonella outbreak from bearded dragons

The US CDC is reporting yet another multistate Salmonella outbreak linked to reptiles. This one is an outbreak of Salmonella Cotham that, as of April 21, has infected at least 132 people in 31 states.

The story is pretty similar to other reptile-associated Salmonella incidents.

58% of infected individuals are kids five years of age or younger.

  • That’s presumably a result of both higher risk contact by young kids (especially kissing reptiles) and the fact that young kids are at increased risk of getting sick when exposed to the bacterium.

42% of infected people have been hospitalized.

  • That’s a pretty high number compared to many other outbreaks. However, the actual overall hospitalization rate is probably lower, since it’s likely that many people had mild infections that were not diagnosed. Fortunately, no one died.

This Salmonella type is pretty rare, which makes it easier to trace it to a specific source. The investigation in this case traced it back to bearded dragons purchased as pets from a variety of stores in different states. Further investigation of the source is ongoing, and breeders that supplied the pet stores are being identified.

Of particular concern here was the presence of resistance to ceftriaxone, an important antibiotic, in a strain from at least one person. That’s something we don’t want spreading, since ceftriazone is often used to treat people with serious Salmonella infections.

Bearded dragons have a lot of personality (for reptiles), and are interesting little critters, so they’ve become popular pets. Like all other reptiles, they pose a risk of Salmonella exposure, and they shouldn’t be in households with high-risk individual (i.e. kids less than five years of age, elderly individuals, pregnant women, immunocompromised individuals). People who own "beardies" should use good hygiene practices and a solid dose of common sense to reduce the risk of salmonellosis. 

More information about Salmonella and reptiles is available on the Worms & Germs Resources - Pets page.

Another preventable rabies death

A recent rabies death in a Russian man highlights multiple screw-ups that led to the man’s death.

A 50-year-old man in Smolino Kovvrosko, Russia was bitten by his cat at the end of February.

  • Problem #1. The cat was presumably not vaccinated against rabies. Vaccination is not 100% protective but it’s pretty likely this was an unvaccinated animal. If the cat was vaccinated, the chance of it having rabies would have been very low.

The man went to the local "medical assistant," but rabies prophylaxis was not given.

  • Problem #2. Here was the opportunity to initiate the discussion about rabies. This would involve querying the health status of the animal and quarantining it for 10 days to see if it developed signs of rabies (which would indicate the need for post-exposure treatment). These things weren't done.

A few days later, the cat started acting strangely. A local vet euthanized the cat. Rabies was not discussed.

  • Problem #3. Malpractice. Plain and simple. A cat with neurological disease needs to be considered a rabies suspect. Bite history must be queried before euthanizing an animal. If rabies testing had been performed or if rabies had been mentioned as a possibility, the man might have been treated.

At multiple time points, there were chances to identify the potential for rabies, but multiple people screwed up and the man died as a result. Rabies is virtually 100% preventable with proper post-exposure treatment, but virtually 100% fatal by the time someone develops disease.

The location of this case can be seen on the Worms & Germs Map at

Animal shelter rabies questions

A few questions were sent in by a reader regarding a recent post about rabies in a Texas animal shelter. They’re good ones so I thought I’d cover them here.

I'm a little confused by this. Weren't these shelter dogs vaccinated?

  • Probably not. Many shelters don’t vaccinate against rabies. There are a few reasons for this:
  1. One reason is cost.  From a shelter standpoint, rabies vaccination may even be considered of less importance compared to vaccination against diseases that are more common causes of illness in shelters (such as parvo).
  2. A big reason is that in most regions, rabies vaccines must be given by a veterinarian, and many shelters don’t have much veterinary involvement.
  3. Another consideration is that even if animals are vaccinated in the shelter, they are not considered protected until 28 days after vaccination.
  4. Yet another thing to consider is whether vaccination would have changed anything. Vaccinated dogs would still require a 45 day observation period. That’s much easier than a 6 month quarantine but still problematic and could lead to euthanasia for logistical reasons.

How exactly were these dogs exposed?

  • Good question. It depends how the shelter was run and whether dogs were mixed together or socialized in groups. Sometimes, all dogs end up being considered exposed unless shelter personnel can definitively state that they know a particular dog didn’t have contact with the rabid dog. It’s often hard to say that with confidence, so by default they consider all dogs exposed.

What about vaccinated pets (dog and cat) that live in homes but go outside in suburban or rural environments? How do we know, for instance, that an indoor/outdoor cat hasn't come into contact with a rabid wild animal or feral cat? Do owners of indoor/outdoor cats really know where their cats go and what they do or who they associate with when they're out all day long? And, what about dogs that go out for their last potty break, unattended, in the fenced backyard at night when the wild critters come out? How do we know, really, that our pets haven't been exposed to rabies?

  • We don’t. That’s an inherent risk in life, and a reason that we push for vaccination of all pets. Vaccination isn’t 100% but it will greatly reduce the risk of an animal developing rabies.
  • This is also one of many reasons to make sure animals aren’t allowed to wander outside unsupervised.

Rabies exposure leads to mass euthanasia at Texas animal shelter

A single rabid animal has lead to plans to euthanize 40 dogs at a Texas animal shelter. It’s very similar to a situation I discussed with vet students recently, and it’s one that raises a lot of emotions.

The brief rabid dog was identified in the shelter.

  • This means that consideration has to be given to who (people and animals) was exposed to the dog.
  • If the shelter cannot state with confidence that a particular dog was not exposed to the affected dog (e.g. if they don’t strictly cohort groups and/or follow these practices), then it’s considered exposed. Fortunately, only 40 of the  over 300 animals at this shelter were deemed potentially exposed. It’s not clear if this is because some dogs were considered unexposed or, more likely, that all dogs were considered exposed but cats were kept separately and therefore not exposed.
  • A dog that’s been exposed to rabies needs a 45 day observation period (if properly vaccinated) or 6 month quarantine (if not known to be properly vaccinated) or euthanasia.

What are the odds that any other dogs were actually infected? Very low.

Is euthanasia, then, a reasonable response? Unfortunately, yes, in many situations.

This is where people start to get upset. Why euthanize these perfectly healthy dogs if none were likely going to get rabies and you can simply quarantine them?

At a basic level, I agree. But, when you think about it more, these actions make sense.

  • Yes, the dogs could be quarantined, but how? That would involve keeping them in the shelter for 6 months, since fostering out rabies-exposed dogs would be hard to justify.
  • If they quarantine them in the shelter, they essentially have to keep the shelter closed since it would make no sense to bring in more dogs (that would have to be strictly isolated from the others) and there’s probably little or no room for added dogs anyway.
  • As a result, instead of being admitted to the shelter, the animals might be euthanized on the doorstep, since there’s often not a "plan B" for sheltering.

So, does it make sense to shut down the shelter for quarantine? That’s hard to justify. The net impact on dogs (both those in the shelter and those that would be admitted) plus considerations of shelter operations (e.g. lots of presumably unvaccinated people having to work with potentially exposed animals) need to be part of the discussion.

Unfortunate as it is, this is often the response. Ideally, there’d be a way to isolate these dogs and continue shelter operations (and pay for the extra costs associated with doing this). In the real world, this is rarely an option.

All of this could potentially have been prevented if the affected dog had been properly vaccinated by its original owners.

EHV-1 on Oregon farm

An outbreak of equine herpesvirus type 1 (EHV-1) neurological disease has occurred on an Oregon farm. At last report, five horses had tested positive for the virus (though it's not clear if all of them had neurological disease) and one had died.

EHV-1 outbreaks are not exactly rare these days. There's certainly more reporting of sporadic disease and outbreaks, but it also seems like there's been a true increase in outbreaks over the past 10-15 years. During my residency, we saw EHV-1 neuro cases not uncommonly, but almost always as single cases. Now, clusters like this are more common, for no clear reason.

Anyway, this outbreak appears to be contained, and it's good that there's been no movement on or off the farm in a while. This will likely end up being a sporadic, contained cluster on a farm with no broader implications. Since EHV-1 is very common, being found in the majority of horses, there's always some risk of disease occurring.  That's one of the main challenges we have in understanding and controlling this virus.

Tracking of EHV-1, and other equine (and dog and cat) diseases will soon be available on Worms & Germs MAP.  Stay tuned.

Strangles in the news

There's been a lot of press about strangles (Streptococcus equi) outbreaks in Ontario lately, including a biosecurity update from the Ontario Ministry of Agriculture and Food (OMAF). In some ways, it's surprising since this is an endemic disease and strangles is pretty much always causing trouble somewhere in the province. However, a little press is never a bad thing, if it can help get people to do what they need to do (but often don't do) to control this highly contagious equine disease.

A big problem with strangles control is the unwillingness of some people to admit they have cases and/or people knowingly taking exposed horses off the farm, thereby spreading the bacterium to other farms.

Along that line, here's our latest educational poster. As with all of our materials, feel free to print, copy, post or disseminate at will. A higher resolution version can be downloaded from the Worms & Germs Resources  - Horses page.

Raccoons in the bed

There’s been some controversy in the past regarding allowing pets to sleep in or on the bed. I don’t get too worked up about it, since I think it’s very low-risk in terms of disease transmission for most pets and households, but a variety if reasons for prohibiting this practice have been given.

I haven’t previously heard the reason: “Don’t do it because you might think you’re petting your cat when you are actually mistakenly pissing off the rabid raccoon that’s dozing beside you.”

Maybe that should be added to at list.

A Massachusetts woman learned this one the hard way. The woman was asleep one night a few weeks ago and reached over to pet what she thought was her cat.  Unbeknownst to her, the critter beside her was actually a rabid raccoon that had come into the house through a cat door. Unhappy at being disturbed (and with a less-than-functional brain from rabies), the raccoon attacked, jumping on the woman's face and biting her lip, refusing to let go. She managed to pry the creature off her face, whack it with her phone and call 911. Animal control caught the raccoon, which was subsequently euthanized and confirmed as rabid.

From a more serious standpoint, this case highlights one of the big drawbacks of having a cat door that allows entry and exit of any cat-sized animal. Keeping cats indoors is a good idea for the cat’s health, the family’s health and the wild bird population (and avoids the cat door issue entirely!).

Things not to do with reptiles

I would have thought this would fall under the realm of common sense, but as the saying goes: Common sense is like deodorant, the people that need it the most don’t use it.

A recent report out of Scotland is warning people not to kiss their pet reptiles, in response to four people who were hospitalized with salmonellosis after kissing bearded dragons, and other reptiles.

Reptile-associated salmonellosis is a major concern, and while there are ways to make reptile ownership very safe for most people, some risk will always remain. Certain behaviours will increase that risk. A large percentage of healthy reptiles have Salmonella in their intestinal tracts, and anything that’s in the intestinal tract ends up in the animal’s habitat and on its skin. Kissing reptiles is an obvious way to be exposed to this bacterium, which can cause serious disease in some situations.

Among the report's recommendations are:

  • Families that own a bearded dragon or similar reptiles are advised to consult their doctor if they become ill with symptoms of fever, vomiting, abdominal pain and/or diarrhoea.
  • They should also inform their GP that they keep a reptile. Children are particularly at risk because they like to stroke and handle pets.
  • NHS Forth Valley have also issued a guide for pet owners to reduce the risk of catching Salmonella from lizards, which includes supervising children to make sure they do not put the animal, or objects it has been in contact with, near their mouths.
  • It also recommended washing hands with soap and water immediately after handling a reptile, its cage or any other equipment, keeping a reptile out of rooms where food it prepared or eaten, and disposing of droppings and waste water down a toilet, rather than in a sink or bath.

Just common sense.

More information about reptiles and Salmonella can be found on the Worms & Germs Resources - Pets page.

Rabies in dog(s?) in Texas

A female Corgi was presented to a Parker County, Texas veterinary clinic and subsequently diagnosed with rabies. Presumably, the dog was exhibiting neurological signs, died or was euthanized, and the veterinarian made sure the dog was tested for rabies (something that could become more complicated in Canada now that the CFIA has inexplicably dumped rabies investigation from their mandate).

Presumably, the dog contracted rabies from a skunk, since it brought a skunk carcass home with it a few weeks earlier, and that timeframe that fits with rabies' incubation period.

The dog's vaccination status wasn't reported, but it was probably not vaccinated against rabies. Rabies vaccination is not a 100% guarantee against contracting the disease (no vaccine is), but it's a very good vaccine, and failure of the owners to get the dog vaccinated is the most common contributing factor to rabies in dogs and cats. It's interesting that there were two other dogs in the family that were up-to-date, so it would be nice to get clarification of this dog's vaccination status.

Unfortunately, the dog was nursing a litter of five-week-old puppies at the time, and the puppies were euthanized. It's hard to say how likely it is that they had contracted rabies, but regardless, a six-month strict quarantine and hand-raising a litter of puppies don't exactly go hand-in-hand.

The report also says that two adults and a child are "currently under medical supervision and treatment as a precautionary measure," meaning they are getting a course of post-exposure prophylaxis, which consists of a shot of anti-rabies antibody and a series of four shots of rabies vaccine.

There's no guarantee, but effective vaccination might have prevented the death of the dog, euthanasia of five puppies, hassles with (presumably) a 45 day observation of the vaccinated dogs, and the angst and expense of post-exposure prophylaxis for three people.  Rabies vaccination is well worth the investment!

More on classroom reptiles

Sometimes, people send me links to articles because they think I’d be interested in them. Sometimes, they do it to see what kind of response they can evoke. I’m not sure which one this was:

I was directed by a couple of people to a recent post of PLOS’s blog about snakes in classrooms. (I don’t really know why a scientific journal organization has a blog to which people who aren’t experts in a given field can submit posts. I would have thought a PLOS blog would relate to PLOS papers, but what do I know.)

I’m sure many people would agree with the sentiments in this blog, but (surprise, surprise), I don’t. It’s not that I’m anti-reptile, anti-pet-in-classroom, or think that the writer is clueless. Rather, he seems to be a passionate and well-meaning educator who just doesn’t see the issues with reptiles in classrooms. I’ve seen the issues and have my take on some of his points (in italics) below.

In this post I hope to give other educators a good foundation for keeping snakes in their classroom. A classroom pet is always a good way to teach responsibility. Administrators love any outside-the-box methods of teaching. Let them know students will be using this animal not just to learn science, but to learn important life skills like responsibility and compassion.

  • True, but it has to be logical and safe. It also has to be educational. Animals can be used in classrooms for educational purposes, but they can also be distracting. The practice can be questionable from an animal welfare standpoint (especially for nocturnal species). They can be associated with disease. Reptiles are the leaders in that class, and reptile-associated salmonellosis has occurred from classroom snakes and other reptiles. Widespread Salmonella contamination of feeder rodents adds an extra level of concern.
  • I also doubt administrators like outside-the-box ideas that pose a health risk to students (and therefore liability).

Your administrator may bring up questions about health risks. Salmonella is often associated with pet reptiles. This can be a bit misleading. Most animals, including pets like hamsters and guinea pigs can carry salmonella, but because turtles are wild caught, and often live in terrariums there is a better chance of salmonella living on their shell.

  • No…(multiple no’s actually). While most animals can carry Salmonella, the prevalence of Salmonella shedding by pet mammals is very low. The rate of Salmonella shedding by captive reptiles is, in contrast, very high. Studies looking at snakes over time have shown that virtually all captive snakes are shedding Salmonella.
  • It’s not just wild caught turtles that are the issue. Captive turtles are also a big concern (the bigger concern, actually).

Most snakes are kept in the same cage setup as hamsters and have little risk of ever having salmonella on their skin.

  • Not a chance. Most do. As mentioned above, studies have shown high (to ubiquitous) carriage of Salmonella by snakes.

I have been handling snakes for 25 years and admittedly have poor hand washing skills and have never had an issue.

  • That’s similar to saying “Gee officer, I drive drunk all the time and I’ve never killed anyone, so you have to let me go.” Yeah, that’s an extreme analogy but you hopefully get the point. Reptile contact causes thousands of cases of salmonellosis in people every year. There might be no infections in this classroom over the next ten years - or a child could die next week. It’s more likely that the former will happen, the the latter is possible.

I do keep multiple bottles of hand sanitizer in the classroom and make sure the students properly sanitize after handling and/or cleaning.

  • That’s great. It’s an important risk reduction tool, but it’s not perfect and doesn’t compensate for the risk.

I would wager students are more likely to salmonella in the lunch line than they are from snakes in a classroom.

  • I doubt it. Even if it was true, eating is a required event. Having a snake in the classroom is not.

Once bitten, the students lose most of their fear and wear it as a badge of honor.

  • Multiple issues with this one...

Some issues are often overlooked:

  • Do teachers always know if they have any high-risk (immunocompromised) kids in the class?
  • Do teachers always know if there will be any high-risk kids visiting the class?
  • What if a student is very afraid of snakes? How is that managed? (Is it managed? Might a child be afraid to say anything and instead work in a very stressful situation in silence?)
  • Are students eating in the same area as the snake (a high risk activity to be sure)?

Here's my standard disclaimer: I actually like reptiles. Now that our kids are beyond the high-risk ages, Heather would be the main barrier to a request from them for a reptile, not me. However, while I like reptiles, I don’t like them in all situations. When the Salmonella risk can’t be contained and assurances can’t be made that only low-risk people will be exposed, reptiles shouldn’t be kept around. A classroom is a perfect example of just such a situation.

More information about Salmonella and safe management of different pets can be found on the Worms & Germs Resources - Pets page.

Raccoon roundworm reminder

An article by Dr. Ann Britton of British Columbia’s Animal Health Centre (AHC) on the blog site  is another reminder of the perils of raccoon poop. Over a 2 year period, 17 raccoons were submitted to the AHC for necropsy, and 12 (71%) of them were infected with Baylisascaris procyonis, the raccoon roundworm. The number of animals tested was small, and the number of infected raccoons is not surprising given similar results of other studies of raccoons in various areas, but it’s a good reminder that a large percentage of raccoons are infected with this parasite, and can shed massive numbers of eggs per day.

“So what?” you might say.

While human infections are very rare, they’re devastating and typically result in death or severe brain damage.

Some key points:

  • Consider all raccoons infected with roundworms, and all raccoon poop contaminated.
  • “Old” raccoon poop is the bigger concern. The roundworm eggs have to mature in the feces for a few days before they are able to infect people or other animals. However, once they’ve done that, they are very hardy and can survive for long periods of time in the environment.
  • Raccoons tend to poop in the same spot day after day. These raccoon latrines can have massive egg burdens.
  • Care should be taken when handling raccoon feces or when cleaning up a raccoon latrine. More info about cleaning up raccoon latrines can be found in a previous Worms & Germs post on this topic
  • Rarely, dogs can also become infected by the raccoon roundworm. Dogs should be kept away from raccoon latrines because of the potential for infection and (maybe of greater concern) the potential for them to carry Baylisascaris eggs into the house on their haircoat.

Click here for the full article from


The ongoing heartworm controversy

The American Heartworm Society (AHS) recently issued a release emphasizing that "Contrary to what owners may think, heartworm disease is a year-round threat" and encouraging people to use heartworm preventive medications year round.

I’m in Canada, not the US, but some US regions have a similar climate and similar issues to us. Also, some people try to directly apply US recommendations to Canada, so I’ve critiqued their reasoning below, from an Ontario context.

The AHS based the release on 3 "facts":

Fact #1: Pesky pests pay no attention to the calendar.

  • Mosquitos and heartworm don’t pay attention to the calendar, but they do pay attention to the weather. The picture to the right is the view of our deck (prior to the last couple rounds of snow). I don’t think there are many mosquitoes hanging around out there. Yes, they are somewhere, since they don’t become extinct over the winter, but is mosquito exposure a reasonable concern now? No.
  • Furthermore, development of Dirofilaria immitis (the heartworm parasite) in mosquitoes ceases at temperatures below 57F, a level we haven’t seen in a while (and likely won’t for a couple of more months). So, even if there are mosquitoes hanging around at the beginning and end of the "heartworm season" in temperate areas, if the parasite can’t develop, it doesn’t matter much.

Fact #2: Mosquitoes know when to come in from the cold.  When weather changes prompt pets to spend more time inside, mosquitoes follow, keeping the possibility of heartworm transmission alive. This means that so-called “indoor” pets are as much at risk as their more outdoorsy counterparts.

  • I’d like to see some data backing that up. I haven’t had a mosquito bite in a while.

Fact #3: Staying on schedule with heartworm prevention keeps pets safe.

  • Potentially, but assuming every pet owner is forgetful and unable to figure out how to treat their animal once a month over a prescribed part of the year isn’t really a reasonable justification for a treatment regimen that uses more drug and costs more money.
  • There is no evidence that 12-months-a-year treatment results in any better compliance than targeted seasonal treatment. (If I can’t remember to give it 6 months of the year, does adding 6 more months really help?)
  • Around here, the vast majority of heartworm cases are in dogs that are not on heartworm prevention medications, not in dogs in which treatment failed, potentially because of compliance problems. Is it possible that some people would be more reliable with monthly treatment? Sure. It’s also possible that some people would be as bad (or worse) with year round treatment. It’s also possible that some dogs would go untreated altogether if their owners balked at the cost of year-round treatment.

The bottom line for me:

Heartworm’s a nasty disease and one that we need to prevent.

There are effective preventive medications.

Ontario isn’t Louisiana. In some areas of North America, year round treatment is absolutely needed. In others, the risk period is much shorter.

Decisions about the approach to prevention need to be based on the risk in the area, the duration of likely mosquito exposure, the outdoor temperature and the owner’s ability to comply with treatment. This is a discussion that needs to take place between pet owner and veterinarian on an individual basis.

There is no one-size-fits-all approach to heartworm prevention.

Merlin and I will each get hundreds of mosquito bites this year (surrounded by wetland as we are). He'll get his monthly heartworm prophylaxis during what I feel to be the "at-risk" time of year. That doesn't include today, when it was -21C this morning!

Parvo (again) in a Georgia animal shelter

For the third time in the past year, Macon-Bill Animal Welfare in Georgia (USA) has a problem with canine parvovirus. The shelter is closed for two weeks in response to a puppy testing positive for this highly contagious virus that can cause serious disease in dogs (almost exclusively in unvaccinated puppies). At first glance, it may seem like an overly-aggressive response. A single parvo case isn’t too surprising in a shelter, and if appropriate routine precautions are followed, there are sound protocols to isolate parvo suspects and a good vaccination program, the risk to other animals can be contained.

In this outbreak, 14 puppies have been euthanized (though some reports differ). Again, the news reports are pretty crappy and it’s unclear whether all the puppies were sick or whether they were euthanized because they were exposed. The statement that parvovirus infection is "most times fatal for dogs" is wrong, since it’s usually treatable, but it certainly takes time, effort and money - things that may be of limited availability in a shelter. Also, if the shelter has inadequate facilities or personnel to properly treat and contain parvo, euthanasia gets considered more readily that in better equipped facilities.

The first report also says that the shelter refunded adoption fees of people who adopted puppies that subsequently died from parvo, so it does sound like there was probably a real (and possibly large) outbreak.

Closing a shelter is an extreme move but it’s sometimes required. It helps reduce the number of animals in the facility in order to make isolation of sick animals, separation of groups, management of exposed and infected animals and many other aspects of the infection control response easier. It also stops adding fuel to the fire, by halting admission of new susceptible animals that can get sick and thereby propagate the outbreak.

Some shelter outbreaks are the result of poor routine management (and some incompetence). Some are the result of inadequate response to an infectious animal. Some are an over-reaction to a limited and containable problem. Some will occur despite the best practices in the best facility. That’s the nature of infectious diseases. Any time there’s an outbreak, a shelter needs to figure out which of the above categories they fit in so that they can reduce the risk of future problems.

(For tracking of selected infectious diseases and outbreaks, stay tuned for the launch of WormsAndGermsMap. More information to come!)

Rabies in upstate New York horse

Rabies in horses is pretty rare but far from unheard of, and each case should be a reminder of the need for proper vaccination. The latest US case was a horse in Newport, New York, but I haven’t yet been able to track down more details. Presumably, human and animal contacts are being investigated, with assessment being made as to whether there was potential exposure to rabies virus. For people, that would mean a course of post-exposure prophylaxis. For animals, that would mean a quarantine, observation period or euthanasia, depending on the species and vaccination status.

The risk to people is quite low. The biggest human health risk is from being attacked or otherwise physically injured by a neurological horse, as opposed to getting rabies from an infected horse. But rabies is something with which we don’t play around, so anyone deemed to have been exposed will presumably be treated.

Rabies isn’t common in horses but it kills. Vaccinate your horses (and other animals).


Tags: ,

New pig disease arrives in Ontario

It was only a matter of time, so it’s not particularly surprising, but a potentially devastating pig disease has made its way into Ontario. It’s not a concern to people or other animals, but it’s worth mentioning here anyway (both to say it’s not a public health or non-pig health concern, and since it’s a good infectious disease topic).

The disease in question is porcine epidemic diarrhea, a rather generically named disease that is caused by the similarly un-originally named porcine epidemic diarrhea (PED) virus, a type of Coronaviridae. Not surprisingly, it causes diarrhea in pigs, but the disease can be devastating. Once on a farm, a large percentage (up to 100% of pigs) can be affected, and death rates can be as high as 100% in young pigs. First identified in the UK in 1971, it’s worked its way across many regions, eventually making it to the US. Its high transmissibility (it can be spread by anything contaminated with pig manure, and it survives very well in the cold, even outside) and presence in the US has indicated a pretty substantial risk of incursion into Ontario, so finding cases in Ontario is unfortunately not surprising.

This evening, the Ontario Ministry of Agriculture and Food announced that the disease has been found on a Middlesex, Ontario farm. It’s a major concern because the disease can have a major impact on pig farms and it’s very difficult to control.  Farmers have been urged to tighten up biosecurity measures for months since the virus emerged in the US in April 2013, and biosecurity measures will be even tighter now to try to prevent further spread. Presumably, a detailed investigation is underway to determine how the virus got onto the farm (and whether it might be on other Ontario farms).

This is a major concern for pig producers in Ontario but of no threat to other animal species, including people.

(click image for source)

Rabies vaccination for travelers

For an almost invariably fatal disease, people sometimes take a surprisingly lax approach to rabies prevention. Much attention is paid to vaccination of pets (well, not by everyone, but it’s pretty good) - and that's great, but sometimes people do a better job of vaccinating their dogs than themselves. It’s not because they care about their dog’s health more than theirs, it's likely due to one of two things:

  1. Needle-aversion
  2. Lack of awareness

Most people in North America don’t need rabies vaccination. Unless you work with animals (or rabies virus), your risk is low and routine vaccination isn’t indicated. However, something that’s often neglected is rabies vaccination for travelers. Rabies is rampant in wildlife and, more importantly, stray animals in many regions of the world outside of North America, and travel-associated rabies is a real concern. If someone will be working with animals or is traveling to an area where rabies is very active, vaccination is recommended. People tend to do a pretty poor job overall when it comes to pre-travel medical counseling and vaccination, and it’s not surprising that rabies vaccination often gets overlooked.

A recent study in Vector Borne and Zoonotic Diseases (Dolan et al 2014) examined this issue. The authors looked at travel medicine clinics, studying 13 235 travelers.

Here are some highlights:
2% of travelers had been vaccinated against rabies previously (e.g. veterinarians, persons with prior rabies exposure). We’ll ignore them for the rest of the results.

62% of the remaining travelers were going to countries were rabies vaccination is strongly recommended.

  • 3% received rabies vaccine at their consultation.

21% of the 62% were going to be traveling for 1 month or more (which means more time to get exposed. Also, if you’re away for longer, it’s more likely that you’ll have to try to find treatment while traveling or cut your vacation short to get it at home).

  • Only 9% of these individuals were vaccinated. Thirty percent (30%) declined vaccination and in 50% of cases, the travel physician thought their itinerary was low risk.

Leisure travelers were less likely to be vaccinated.

Take home messages:

  1. Go to a travel clinic before you travel (and do it early enough for vaccination to be effective - going the day before doesn’t help much).
  2. Talk to the doctor about the potential for rabies exposure where you're going.
  3. If you’re going to make the effort to do 1 and 2, take their advice.

From the archives...Why should I vaccinate Fluffy, he's an indoor cat? (aka Why I'm glad I vaccinated Finnegan, my indoor cat)

Over the past few years, I've written a lot of posts on this blog. Hopefully the odd one's been interesting and/or informative, and in the spirit of recycling (not laziness!) I'm going to re-post some that I thought were memorable or of particular interest.

The first one is actually the second post ever on this site (original post date: April 11, 2008).

Picture this. I’m driving home from the airport and get a call from my wife who’s locked in the bedroom with our kids because a bat is flying around the house. It’s not necessarily a big deal, except for the fact I thought I might have seen a bat in the house a couple days earlier, and a bat in a house with access to sleeping people = rabies exposure! [2013 addition: Not all jurisdictions consider this to be exposure now.]

I’ll save you the long but somewhat funny saga, and just say I eventually caught the bat. Our sigh of relief was short-lived, however, because it came back rabies positive. That meant we all needed rabies post-exposure prophylaxis (2 shots for Heather and I who have been vaccinated, but 6 shots for each of the kids). We also have a dog and cat, and they had to be considered exposed as well (the cat almost caught the bat). The cat, Finnegan, is an indoor cat but was vaccinated. The repercussions on the animals were much less than on us. However, if they had not been vaccinated, we would have had a problem.

Protocols for rabies exposure in non-vaccinated animals vary between jurisdictions, but long quarantines are the norm, and euthanasia often is chosen.

The take home message is if you care about yourself, your family and your pets, vaccinate your pets against rabies - even with indoor-only animals. In most places it’s the law. It’s also good sense.

Rabies exposure...the good and bad

A rabies exposure incident in New Jersey provides another example of some common good and bad points that come up in these situations.

Fifteen people from four families, along with a veterinarian, are receiving post-exposure treatment after contact with a rabid kitten. In the all-too-familiar scenario, a kitten was found in a cat colony outside a workplace and taken home by a well-intentioned individual. A couple of weeks later, the kitten became sick, ultimately showing signs of neurological disease. It was euthanized at a local veterinary clinic, and subsequently identified as rabid.

A sibling of the rabid kitten that was adopted by a different family is under a strict six month quarantine. As opposed to most rabies exposure quarantines, the odds of this kitten being infected are reasonable high, so the little critter is certainly a concern.

The good points:

The kitten was taken to a vet.

  • This may sound simplistic but it’s critical. If the kitten had died before being taken to the clinic, would testing have been performed? It’s hard to say but it’s much less likely. While people don’t tend to think about diagnostic testing after their pet has died, it’s important to consider what might have killed the animal and whether there are any risks to people that need to be evaluated.

Rabies testing was performed.

  • Again, maybe this seems straightforward but this is a critical step. The veterinarian has to identify the potential for rabies (pretty easy here) and explain the need for testing to the owner (or alternatively, get public health personnel involved to seize the carcass and mandate testing… a much messier approach).

The bad points:

Lots of people were exposed to the rabid kitten - a total of 15 people from four families.

  • That’s hard to prevent, in reality. Kittens attract attention. Whether all 15 individuals actually had contact worthy of calling them exposed to the virus itself isn’t clear. There’s no mention of anyone being bitten. However, given the sharp teeth and playful behaviour that can easily result in little bites (or saliva-contaminated scratches), it is much better to err on the side of calling someone exposed.

All 15 people went to an emergency room for treatment on a weekend.

  • That’s a waste of resources and ER time. Rabies exposure is a medical urgency, but not an emergency. Rarely do you need to get treatment started immediately, especially if it wasn’t a large bite to the head or neck. They could have waited until regular hours and gone to their physician or public health. Often, there’s poor communication and lack of understanding regarding the time frame for post-exposure treatment, which can lead to this.

The veterinarian was exposed.

  • That may have been unavoidable. However, a young, unvaccinated kitten adopted from a feral colony that has neurological disease is rabid until proven otherwise. Basic infection control practices can reduce the risk of rabies exposure. Maybe those were used and exposure still occurred; that’s possible, but it’s a reminder that prompt identification of rabies suspects and using good infection control practices is important.

The "criticall important antibiotic" debate

Last week, I mentioned the antibiotic use plenary session at the ASM-ESCMID conference on methicillin-resistant staphylococci in animals. The session was designed to discuss the use of "critically important antibiotics" in companion animals - drugs like carbapenems (imipenem, meropenem) and vancomycin, which are used for treating serious multidrug-resistant infections in people as well. After the (very lively) session, I was asked when I was going to write a follow-up post, so here it is.

The session went well and I’ll hit on some highlights.

I was on a panel with good colleagues Ulrika Gronlund-Andersson (Sweden) and Engeline van Duijkeren (Netherlands). Both are extremely well versed in the field and come from countries with different, but in general restrictive, policies pertaining to antibiotic use in animals. They also (not completely coincidentally) come from countries with less antibiotic resistance in companion animals, which means they don’t see the same degree of resistant bugs in patients that I do.

I was there as the guy from North America where we have absolutely no control over antibiotic use. It was strange being the one supporting more liberal use of antibiotics, since I’m often seen as being on the other extreme when I speak in North America. As I wrote earlier, I think (at least in my patient population) that we need to use some "big gun" drugs at times, but we also need to use them right.

It was a tough crowd. There were some nice differences in opinion, partly reflected in individuals’ backgrounds (clinical vs non-clinical, northern Europe vs other regions), but there were some great points too.

At one end, there was the opinion that banning the use of these drugs in animals altogether is acceptable. (A comment along the lines of "there are lots of dogs and cats available in animal shelters as a replacement if a pet gets a multidrug-resistant infection" was made, to varying degrees of agreement and outrage). I was at the other end of the spectrum, which really wasn’t at the other end of the whole spectrum, meaning I think we need to use these drugs at times, but we certainly don’t want unrestricted, imprudent use. We need to use them right, and very sparingly. I emphasized the point that every culture result is attached to a patient AND there’s a moral obligation to make sure that patient doesn’t suffer AND every patient is attached to an owner AND that attachment might be profound, with definite emotional and even health effects for the person associated with the animal's presence and condition.

An interesting set of comments came from a clinical colleague in southern Europe who said something along the lines of “I see vets in my country misusing these drugs so badly that I think we need to ban them. People won’t do it right so they shouldn’t do it." That’s hard to argue, and shows how we need to improve antibiotic use in veterinary practice. If it's clear they're being used poorly, we should lose access to them.

Another comment was along the lines of “I’m not concerned about OVC, where they have awareness, some restrictions and someone [me] as both a monitor and resource. But, that’s not the way most of the world works.” Again (taking the compliment and not trying to sound arrogant here), it’s hard to argue that point. However, it again comes back to figuring out how to improve antibiotic use and do things right. I think we’ve done at good job at our institution reining in use of important drugs, through education, peer pressure, surveillance and a bit of internal restriction.

There were a couple of comments like "If you only use them very sparingly, there can’t be any realistic risk, particularly compared to massive use in humans" and “Our hospital only uses them a couple of times a month,” supporting the general notion that internal restriction can be effective, and that makes sense, at least to me.

At the end, the moderator (another good colleague and expert in his own right, Luca Guardabassi from Denmark) polled the audience: Should these drugs be banned completely from animals or allowed with restrictions?

It was a pretty even split, but I think banning them came out ahead (with the disclaimer that the audience was biased towards people from countries with fewer resistance issues and more restrictions, and fewer clinical people). (A few people also came up to me after and said “I agree with you, but I was too chicken to say anything.”)

It was a great discussion, and I think it made both sides rethink their positions somewhat. I still think we need to have access to these drugs, since otherwise we’ll be saying "Sorry, your dog has a multidrug-resistant infection but I can’t use the antibiotic that would treat it, so we need to euthanize him now." At the same time, the status quo can’t continue. Misuse and overuse of critically important drugs is a problem in North America and beyond, and we have to figure out how to deal with it. Ultimately, restriction might be required, but it’s much better for the veterinary profession to deal with it internally, by improving practices on their own and internally restricting or regulating how they are used.

One question I posed to the audience was, rank these actions in terms of what you think their impact would be on antibiotic resistance in people and animals:

  • 1% reduction in fluoroquinolone use in humans
  • 5% reduction in amoxicillin/clavulanic acid use in humans
  • 5% reduction in ceftiofur use in food animals
  • 1% reduction in fluoroquinolone use in companion animals
  • 5% reduction in amoxicillin/clavulanic acid use in companion animals
  • 75% reduction in carbapenem use in animals
  • Ban on vancomycin use in animals

More food for thought (and maybe for a future post).

Yes, Ulrika, Engeline, Luca and I are still on speaking terms. A little wine and a (4 hour) Italian dinner heal all wounds.

Turtles and surprise there

Pet aquatic turtles have been implicated in three outbreaks of salmonellosis involving 43 US states over the past year and a half.  Disappointing, but not surprising.

Disappointing, obviously, because people are getting sick. Disappointing also because these outbreaks have occurred over and over, despite availability of good information on how to reduce the risks.

It’s not surprising, though, because it’s happened so often.

Why? It’s a combination of people not researching these animals properly before buying them, pet stores not providing information, turtle farmers in denial that there is a problem, people flouting the small turtle ban, and poor overall awareness (and application) of basic infection control measures (more on that in a minute).

The Michigan Department of Community Health (MDCH) has reported that 5 people from Michigan have become ill as part of these outbreaks. As is typical, most were kids.

So, if you own a pet turtle, what do you do?

“We don’t recommend that they release them into the wild. Instead, we recommend that you contact a pet retailer, a pet store, to talk to them about it. Also, you can speak with a local animal shelter or a veterinarian for other options as well.” said MDCH spokesperson Angela Minicuci.

That’s not bad advice. However, the pet store and vet probably aren’t going to take the turtle. The humane society might (and those that do might try to find it a home or might just euthanize it right away). There’s another step here that’s forgotten: doing a risk assessment.

Are there high-risk people in the household (kids less than five years of age, elderly, pregnant women, people with compromised immune systems)?

  • If yes, the turtle should be re-homed.
  • If no…

Are you willing to accept some degree of risk, risk that can be mitigated with some basic practices?

  • If no, the turtle needs a new home. (There’s always some degree of risk with turtle (and any animal) ownership).
  • If yes…

Are you willing/able to take some basic measures to reduce the risk of Salmonella exposure, on the assumption that your turtle is Salmonella positive?

  • If no… (take a guess here) the turtle needs a new home.
  • If yes...

...Get some good information about reducing the risk and decide whether you want to keep the turtle. A good place to start is our turtle fact sheet on the Worms & Germs Resources - Pets page.


The big gun antibiotic controversy

I'm getting ready for next week's ASM/ESCMID conference on methicillin-resistant staphylococci in animals, for which I'm involved in a plenary session about critically important antibiotics in companion animals. The whole area of antibiotics and animals in complex and controversial (and made worse by political agendas, lack of evidence and confusion about different issues).

Anyway, one thing that often gets overlooked is the difference between companion animals and food animals in how antibiotics are used, what regulations are in place, and what differences should be present between species. Just discussing antibiotics "in animals" isn't adequate, because a pet dog is very different from a feedlot steer in many respects, and many of the issues around antimicrobial use are different as well.

One question that's going to be up for debate is "should antibiotics that are used in serious resistant infections in people be used in animals?"

My answer to this important question has evolved a bit over the years. It's "yes, but..."

The but is the important part.

  • As a veterinary clinician, I see the need to treat my patients (or the patients I'm providing advice on).
  • As someone who works in the field of antimicrobial resistance, I see the issues with drug use and resistance.
  • As a parent, I don't want my kids to develop a serious infection that I may have played a role in fostering.
  • As a pet owner, I understand the desire to try to save the life of a pet.

That doesn't even cover all the issues, but it shows the variety of standpoints that need to be considered.

Back to the question at hand.  As I said, my answer is yes, but with disclaimers:

  • We need to use antimicrobials only when required.
  • We need to use antimicrobials properly.
  • We need to take measures to reduce infections overall (so that less antimicrobial use is required).

At our veterinary teaching hospital, we have a restriction policy for vancomycin, an important human drug. For it to be used in an animal, the following criteria must be met:

  • The offending bacterium must be susceptible to vancomycin (duh!).
  • There must be no other reasonable antibiotic options that are likely to work.
  • There must be a reasonable chance of survival with treatment.
  • Systemic treatment of the infection is needed (i.e. it can't just be treated with local therapy).
  • The clinician must get approval from infection control (i.e. me).

That has happened twice in the past 12 years. Both cases were dogs with life-threatening abdominal infections; they were each treated with a short course of vancomycin and survived.

That's probably 10-14 days of vancomycin use per ~200 000 patients. I don't know what the comparable numbers would be for people in Guelph General Hospital down the road, but their use would be staggering compared to ours. Also, the risk of resistance with each use is presumably much higher for each human patient since they are in an environment where vancomycin resistant bugs are present (and therefore can be selected for with treatment). Vancomycin resistance is exceedingly rare in our hospital population, further decreasing the risk.

Is there some risk? Certainly. Use inevitably carries some risk.

Does our 2 / 200 000 use constitute a reasonable human health risk? I can't see how it does.

So, is antibiotic use in animals something we can just ignore? Absolutely not. It's a big problem, just like antibiotic use in people. However, just as all animal species issues aren't the same, all types of antibiotic use aren't the same.

Are there other things we can focus on to reduce resistance? Absolutely.

  • A 1% improvement (i.e. decrease) in use of fluoroquinolones in animals would probably have a dramatically greater effect on resistance in human and animal pathogens than a complete ban on vancomycin. Fluoroquuinolones are a commonly used drug class in animals that is also important in people, and one in which resistance is certainly an issue.
  • A 1% improvement (i.e. decrease) in use of of fluoroquinolones in humans would probably have an even greater effect.
  • Better infection control, preventive medicine and other practices could potentially have an even greater impact by reducing infections and therefore the need for any drug therapy, and delaying the treat-resistance-more treatment-more resistance cascade.

Some people would say that any drug that's of any relevance in humans should not be used in animals. Some veterinarians would say no one should control their prescribing practices. Like most things, I think there's a happy (and more effective and practical) middle ground. It's not the status quo, though. We need to have discussions about how to control antimicrobial use in all species, including humans, and not just pointing fingers at the other side.  We also need to discuss how to improve infection control to reduce the need for antimicrobials, and how to improve the way we use antimicrobials when they are required.  In order to have good discussions, we also need proper data (something that's still lacking).

Different opinion? Feel free to comment (or show up in Copenhagen next week).

Feeder rodent Salmonella alert, Ontario

A local county newspaper had a front page headline about a zoning amendment that was approved to allow for a feeder rodent facility that will produce about 10 000 rodents a week (I know, apparently there aren't a lot of big things happen around here). Co-incidentally, a couple days later, I received an alert and fact sheet from the Ontario Ministry of Health and Longterm Care and the Office of the Chief Veterinarian of Ontario about Salmonella and feeder rodents because of an increase in human Salmonella Typhimurium infections in people in Ontario and a link to feeder rodents in some cases.

It’s not really a surprise. Large and sustained outbreaks of salmonellosis associated with feeder rodents have been reported for a while. These rodents are often produced at large facilities with hundreds of thousands of rodents, and if Salmonella gets in the facility, thousands (or millions) of biohazardous small-and-fuzzy snake snacks can get shipped around the world.

The fact sheet is attached here, and it contains good information about the standard reptile and rodent handling practices that I always keep coming back too: wash your hands, keep high risk people away, prevent cross-contamination of snake food with people food (e.g. don’t thaw frozen rodents in an open container in the fridge (yuck… but it happens) or cross contaminate kitchen surfaces) and other basic hygiene practices.

Infection control isn’t complicated, it’s often just ignored.

Brucellosis from Aussie pigs

Australian Elmer Fudds beware… there are concerns that feral pig hunting is a risk factor for brucellosis in New South Wales. Brucellosis is a rare disease, but a report like this raises concern because it can be nasty, and it can also be hard to diagnose (or it's not considered right away).

We don’t have feral pigs in Ontario, but they are common in many areas, including parts of the US. In Australia, it’s been estimated that there are over 13 million feral pigs ranging over approximately 38% of the country. Any contact with animals carries some degree of infectious disease risk, and hunting is no exception. In fact, some risks are higher because of the close contact with the target animal and its bodily fluids after its been killed.

The brucellosis story is a bit old, and relates to a NSW Public Health Bulletin from a few years ago (Irwin et al. 2009) of four cases of this bacterial infection detected between December 2006 and September 2009. The infected individuals, all men, reported having hunted feral pigs before the onset of disease, and they all butchered the pigs without any protective gear (e.g. gloves). They didn’t have any of the common risk factors for brucellosis, such as overseas travel or consumption of unpasteurized milk from areas where the disease is endemic in dairy animals, so it was likely that the pigs were the source. Public health authorities trapped and tested 200 pigs, all of which were negative. However, 200 negative pigs from a multimillion population certainly doesn’t mean the pigs are Brucella- free, as was shown when Brucella suis was found in testicular samples of pigs from southern Queensland in a separate investigation.

All of the men reported typical symptoms including fever, sweating, abdominal pain, vomiting, back pain and "loin" pain (a term that’s not typically used since it’s not very descriptive - brucellosis often causes testicular swelling so maybe that’s what it means. Either way, it doesn’t sound pleasant).

Brucellosis is a disease that warrants some attention because it can be nasty and it can take a while to diagnose. Fortunately, it’s rare in most developed countries, although the same link between brucellosis cases and hunting feral swine has been seen in the US as well. Hunters need to be aware of a wide range of potential zoonotic diseases. Additionally, brucellosis is a concern for pet owners since sporadic human cases associated with transmission from pets have been reported, and this may be an emerging or previously overlooked problem.

Cowpox from a cat? Not as strange as it seems.

Cowpox is a disease with a misleading name. It would be reasonable to assume that cowpox comes from cows.

It doesn’t. (Just like monkeypox doesn’t come from monkeys.)

Cowpox is a viral infection and the natural reservoirs are actually rodents. Humans, cats and cows are amongst the more common "accidental hosts" - species that get infected sporadically but are not reservoirs.  Contact with an infected rodent can result in transmission of cowpox to people. The virus can also come from an animal that gets cowpox from a rodent and then passes it on to a person, as a Dutch teenager found out...

A 17-year-old girl found a kitten in the ditch and picked it up. It was sick and ultimately died (probably not from cowpox). She later developed a skin lesion on her wrist, which progressed to red lumps over her arm. Not surprisingly, cowpox didn’t jump to mind when she saw her doctor, so it took a while before a diagnosis was made, but they figured it out eventually. Since cowpox infection is usually self-limiting in individuals with a normal immune system, the girl eventually got better without any specific treatment. It took a couple months, though, and left a scar.

Presumably the girl got cowpox from the kitten, which probably got cowpox from contact with an infected rodent. This is an unusual series of events, certainly, but far from unprecedented. Cats are one of the main non-reservoir species that are implicated in cowpox transmission to people, presumably because they get infected while hunting wildlife (e.g. rodents). Cowpox is a pretty rare infection in people and usually not very severe, so it’s nothing to be paranoid about, but it’s another reason to use good hygiene practices and keep cats from going outside and hunting.

FYI Cowpox got its name because infected cows often develop lesions on their udders, and it was a common infection of dairymaids in times when cows were milked by hand.  This virus also features prominently in the development of the world's first vaccine in the late 1700s, as the cowpox virus itself was used as a vaccine against the deadly smallpox virus.

Where does Clostridium difficile really come from?

It seems like half the people I know have sent me this article about Clostridium difficile for comment. It’s a news article about a New England Journal of Medicine research paper (Eyre et al 2013).

The paper has some interesting findings. They used whole-genome sequencing to look at the genetic makeup of C. difficile from infected patients in a hospital. It was an impressively comprehensive study that looked at samples from over 1000 patients. By looking at the DNA of C. difficile isolates from patients, they could see when the bacterium was likely passed between patients and when it was not. Over the 3 year study period, almost half of the C. difficile isolates were different enough genetically from other isolates to indicate they didn’t come from someone else in the hospital.

I don’t think it can be said with 100% confidence that all those C. difficile strains were truly acquired outside of the hospital (i.e. in the community), since they only looked at people with C. difficile infection. People can also carry the bacterium without any signs of disease, and it’s possible that such individuals were a source of infection for others in hospital. Since the researchers weren’t testing for subclinical carriers, they don’t know whether "unrelated" cases were from strains acquired outside the hospital or from undetected carriers in the hospital. I suspect a lot of cases truly do originate outside of the hospital, though, and this goes against current dogma that most hospital cases are acquired by spread between patients.

I think we're eating it all the time, probably from animals, and most of us get it and it doesn't matter."

  • I’ve been saying that for years. I think we probably ingest C. difficile every day from food, water and various environmental sources. Most often, it doesn’t cause of problem. Figuring out why it does in some situations needs to be a priority.

If you don’t look, you don’t find. It’s been a self-fulfilling prophecy for years with C. difficile:

  • People (supposedly) only get C. difficile if they’ve been in hospital on antibiotics.
  • If you don’t have those risk factors, you don’t get tested for C. difficile.
  • So... we never diagnose C. difficle in people who haven’t been in hospital or on antibiotics.

It’s been shown for many years (but often overlooked) that C. difficile may be a common cause of diarrhea in people in the general population and those without traditional risk factors.

more and more deep cleaning ain’t going to do any good.

  • (Not the typically grammatical approach for a University of Oxford researcher, but...) The point is that you can do everything to control C. difficile in the hospital and you still won’t be able to control all cases. I agree with that. However, care must be taken to ensure this doesn’t get translated into “most C. difficile is coming from outside the hospital anyway, so why should we spend so much time and money on cleaning and infection control?”

These findings have led some people to point the finger at animals as important sources of C. difficile.

  • I think this is taking the animal link too far. This is coming from someone who was one of the first and is still one of the few people to have looked at C. difficile in food. So if anything, I stand to benefit from any links between food and C. difficile (since more concern and more interest = more research opportunities).

Clostridium difficile expert Nigel Minton, from the University of Nottingham, had a nice balanced comment: "Obviously hospital infection control measures have had a big impact on C. difficile cases. But there is a growing feeling that community-acquired C. diff is equally important and there are also studies suggesting possible transmission to humans from animals. This has quite clearly been demonstrated from pigs to humans in the Netherlands."

  • I think this means that we need to pay attention to the potential role of animals, but not just dump the blame on them with no further study. The key point is we need proper research to figure out how C. difficile circulates in the community and what role animals, food, water and the environment play in transmission.

and “Nursing homes are a major factor as well, it is where you get a lot of people susceptible to infection."

  • That’s another interesting area and one that we’re currently investigation.

2012 US rabies recap

It's that time of year again… time for the US annual rabies surveillance report in the Journal of the American Veterinary Medical Association (Dyer et al 2013).

Some highlights:

  • There were 6162 cases of rabies diagnosed in animals in 2012. (This is a 2.1% increase from 2011, but I don't put much stock into changes like that when the tested cases only represent a minority of the animals with rabies.)
  • The vast majority (92%) of rabid animals were wildlife, with raccoons "winning" at 32% of all animals diagnosed. They were followed by bats (27%), skunks (25%), foxes (5.5%), cats (4.2%), cattle (1.9%) and dogs (1.4%)
  • A variety of other animal species were also diagnosed as rabid, including bison, llamas, bobcats, deer, a cougar, a mink, groundhogs, opossums and beavers. That just shows how any mammal is at risk. I was surprised at the number of rabid groundhogs (42 in 10 states).
  • While dogs accounted for only 1.4% of cases (84 animals), a disproportionate number were found in Puerto Rico (18), with relatively large numbers also in Texas (16), North Carolina (9), Georgia (7) and Oklahoma (7). Presumably this relates to a combination of lower vaccination rates and a higher level of endemic rabies in the wildlife population in these areas. It appears that none of the rabid dogs were properly vaccinated against rabies, although vaccination history was not known for many.
  • Rabid cats were mainly found in areas where raccoon rabies was common. Pennsylvania had the most rabid cats (15.6%). Other commonly affected areas were Virginia, North Carolina, New Jersey and Georgia.
  • The distribution of rabies virus types was pretty much as expected. Raccoon rabies virus predominated on the east coast. Skunk rabies covered the central US, overlapping with fox rabies in the southern regions. Fox rabies was also dominant in the Nevada and Arizona area, while skunk rabies predominated in central to northern California. Fox rabies dominated in Alaska and the mongoose rabies virus strain was found in (not surprisingly) Puerto Rico.

Some Canadian data were also reported:

  • There were 142 confirmed rabies cases in animals, 84% of which were wildlife.
  • There were 18 rabid cats and dogs, 4 livestock and one person. The person was infected with rabies while abroad, in Haiti.
  • No rabid raccoons were found - something that has been the case since 2008.

And in Mexico…

  • There were 12 cases of rabies in dogs, and those involved the canine rabies virus variant which is not present in Canada or the US.

Take home messages:

  • Rabies...bad.
  • Rabies... still here (and not going away any time soon).
  • Vaccinate your animals.
  • Stay away from wildlife.

Image: Distribution of major rabies virus variants among mesocarnivore reservoirs in the United States and Puerto Rico, 2008 to 2012. (click for source: Dyer et al. J Am Vet Med Assoc 2013)

Is flushable cat litter a public health hazard?

I had an interesting question today about the cat-associated parasite Toxoplasma gondii. It can cause serious infection in people that ingest it, particularly in immunocompromised individuals and pregnant women, but disease is rare. Since cats can pass one form of the parasite in their feces, the question was whether using flushable kitty litter is a bad idea, since it would result in Toxoplasma being discharged into the sewage system.

On one hand…

  • Water is a source of Toxoplasma exposure.
  • Food contaminated by Toxoplasma-contaminated water is a also a source of exposure.
  • Municipal water was determined to be a possible source of exposure in at least one Toxoplasma outbreak (Bowie et al. 1997).
  • The form of Toxoplasma in cat feces is hard to kill, so it could survive routine water treatment measures.

On the other hand….

  • Cats rarely shed Toxoplasma. They typically do so only for a short period of time after their first exposure (usually when they're quite young), so the vast, vast majority of household cats are not shedding the parasite.
  • There’s a massive dilutional effect when something goes down the drain. To constitute a risk, the parasite would have to come out of the cat, survive waste water treatment and be discharged into the environment, then either make it into a drinking water source (with more dilution and more treatment) or reach someone’s mouth through other routes such as on food or from contaminating the general environment (e.g. soil, recreational water bodies). Even if some Toxoplasma were present in cat feces in flushable litter, the odds that someone susceptible would encounter enough Toxoplasma from this source to cause disease is exceedingly remote.

I don’t think using flushable litter constitutes a public health risk.

More information about Toxoplasma is available on the Worms & Germs Resources - Pets page, as well as in our archives.

Rabid horse attacks owner

I've had the occasional debate with people about the public health risks of rabies in horses.

On one hand...

  • Rabies is rare in horses.
  • I've never seen a report of rabies transmission from a horse to a person.

On the other hand...

  • Rabid horses have attacked (and killed people).
  • It doesn't matter whether the horse gave you rabies or stomped on you. Dead is dead.

A Carroll County, Georgia horse owner learned the risk of rabid horses the hard way, but fortunately doesn't appear to have been seriously injured. .

One day, the owner was bitten while getting the horse out of the pasture.

The next day, the horse attacked him....and according to the owner, tried to kill him. That night, the horse was in the pasture chewing on its leg and periodically nosing the electric fence.

While rabies is rare, these are some of the hallmarks...aggression and strange behavior. The horse was euthanized and tested positive for rabies. Presumably, the owner is undergoing rabies post-exposure prophylaxis.

Rabies is nothing to play around with. It's very rare in horses but endemic in wildlife so there's always a chance for exposure in most regions. Rabies vaccination is a cheap and highly effective way to reduce the risk.

Should a dog with MRSP be spayed?

This is an increasingly common question, as methicillin-resistant Staphylococcus pseudintermedius (MRSP - essentially the canine version of the high-profile human "superbug" MRSA) has expanded greatly in the canine population. As more dogs get MRSP infections and even more become inapparent carriers of this bug, more dogs that are carriers will need surgery (both elective and non-elective).  Since MRSP is now a leading cause of surgical site infections in dogs, there's concern about what to do with these carriers, particularly when it comes to elective surgeries like spays and neuters.

My answer to the question is... maybe.

If the dog has an active MRSP infection (e.g. skin infection), I'd say "hold off for a while" if possible. I don't like elective surgeries being done on animals with active infections (this applies to almost any kind of infection, not just MRSP). If an animal has an active MRSP infection, it might increase the risk of the surgical site becoming infected because of the greater overall burden of MRSP on the skin and elsewhere.

If the dog doesn't have an active infection (e.g. is a healthy carrier after having gotten over a previous MRSP infection), I'd say "go ahead."

Here's why:

  • Spay-associated infections are quite rare.
  • We don't use antibiotics prophylactically (i.e preventatively) for spays (or at least, they shouldn't be used for this kind of low-risk procedure - unfortunately some people still use them inappropriately).
  • MRSP is no more likely to cause a spay infection than methicillin-susceptible S. pseudintermedius. It's just harder to kill when an infection occurs.
  • Methicillin-susceptible S. pseudintermedius can be found on almost all dogs.

So, if infections are rare, despite the fact that S. pseudintermedius is present on pretty much all dogs and that we don't use drugs to kill S. pseudintermedius during (or after) spays, there should be no added risk of infection by the antibiotic-resistant version of this bug.

Every dog is carrying lots of different bacteria that can cause an infection at any time. That's why we use a variety of surgical antisepsis practices (e.g. clipping, scrubbing, sterile instruments, proper operating room) to help prevent a critical number of bacteria from getting into the sterile surgical site where they can start to cause problems.

This strategy doesn't necessarily apply to surgeries where antibiotics are used prophylactically and where staph are the main causes of infection, especially in situations like orthopedic procedures where MRSP infections are common and can be very hard to treat. What to do in those cases with an MRSP-positive animal is a tougher question, and we're working on an answer to it at the moment.

Rabies alert in Calgary

Alberta Health Services Medical Officer Dr. David Strong has urged the public to take precautions after a Calgary-area puppy was diagnosed with rabies. The five-month-old puppy came from Nunavut and had not been vaccinated against rabies. All those with whom the puppy had contact have been assessed and it doesn't sound like anyone required post-exposure treatment.

Since rabies is endemic in wildlife in the region, finding rabies in a puppy (especially when the puppy was presumably exposed elsewhere) doesn't mean that there's any greater risk to the public than there was before the case was identified. The imminent concern is the presumably limited number of people and animals with which the puppy had contact while it may have been infectious, but it's always useful to remind people about rabies and precautions they should take to prevent rabies exposure. In the infectious disease world, we often have to take advantage of high profile incidents to drive home some basic principles that we'd like people to pay attention to all the time. 

Key rabies prevention points include:

  • Avoid contact with wildlife.
  • Keep your pets away from wildlife.
  • Ensure your pets are up-to-date with their rabies vaccination.
  • Make sure any bites from wild or domestic mammals are reported to public health so that it can be determined whether rabies post-exposure treatment is required.

Pretty basic. Common sense goes a long way with infectious disease prevention.

Capnocytophaga Info Sheet

We've just posted a new info sheet about Capnocytophaga.  One member of this bacterial group in particular, Capnocytophaga canimorsus, makes the news periodically because it can cause devastating infection in some individuals, like the Ottawa woman who lost three limbs after one of her own dogs accidentally bit her.  This kind of severe infection, which is also sometimes called dog bite septicemia, is actually quite rare, but people with certain risk factors such as diabetes, alcoholism, and particularly lack of a functional spleen are at much higher risk. The bacterium very commonly lives in the mouths of dogs and cats, and is considered a part of the normal oral microflora in these animals. People are therefore commonly exposed to Capnocytophaga, yet infection is rare, but because it can be so catastrophic it's important to know the facts, especially if you or someone you know may be at higher risk.

You can read more about Capnocytophaga on the new info sheet, which you can find along with all our other info sheets on the Worms & Germs Resources - Pets page. You can also read about Capnocytophaga in the posts in our archives.

Keeping kids safe around pets

One of our most frequent pieces of advice on W&GB when it comes to kids is to always make sure they are supervised when they are around pets.  This is important for at least two major reasons, one being avoiding potential high-risk contacts when it comes to infectious disease transmission (e.g. face-to-mouth, hand-to-bum), and the other being reducing the risk of injury (and subsequent infection) from bites and scratches.  Children often don't know or aren't aware of the signs that a pet is stressed or uncomfortable, essentially forcing the pet to take progressively more drastic measures to get its message across, potentially ending in a snap or a bite.  The problem is a lot of the time the supervising adult also doesn't know these signs, and thus many a bite or scratch may happen even when a parent is watching carefully from only a few feet away.

Yesterday I came across an excellent post on this very topic on another blog written by Robin Bennett, a certified professional dog trainer (CPDT-KA) in Virginia.  Her post was very aptly entitled "Why Supervising Dogs and Kids Doesn't Work."  Click on the title to see the entire post, but here are a few of the great points she makes:

  • Watch for inappropriate child behaviour.  In Robin's words, "Don’t marvel that your dog has the patience of Job if he is willing to tolerate [being poked, prodded, yanked, pulled, pushed, etc]. And please don’t videotape it for YouTube! Be thankful your dog has good bite inhibition and intervene before it’s too late."
  • Intervene early.  If the dog loses that loose, wiggly body posture and starts to stiffen up, don't wait until the animal has to escalate its message to growling or snapping to step in.
  • Support the dog's good choices.  If the dog chooses to move away from a child because it is uncomfortable, support that choice and don't let the child continue to follow the animal.  If the pet can't get away, it may scratch or bite to try to make the child go away instead.  Don't force the dog to make that choice. (This applies equally to cats or any other pet!)

It's very important for pet owners to educate themselves about basic pet behaviour, whether they have dogs, cats or other animals, and to teach that same information to their children.  Another great program that teaches kids how to behave around dogs, and unfamiliar dogs in particular, is the "Be a tree" program, details of which can be found on the Doggone Safe dog bite prevention website.

Salmonella and fair poultry exhibits

As fall fair season starts, concerns about petting zoo outbreaks rise. While deficiencies are still common, petting zoos seem to be getting better with their infection control measures. People too are starting to get better at doing what their asked to do - namely washing their hands after visiting these exhibits. However, as we’ve shown through a few different studies, compliance with handwashing after being in a petting zoo is far from perfect. People also often fail to recognize the need to wash hands after being in a petting zoo even if they don’t touch an animal. It’s not uncommon to see a family come out of a petting zoo and the parents direct the kids to wash their hands, while the parents themselves just stand back and watch. Yes, if you touch the animals you’re more likely to have contaminated your hands. However, it’s been shown in a few studies and outbreaks that just being in the petting zoo area is a potential risk, and that disease-causing bacteria can be spread to a variety of hand contact surfaces.  In short, the bugs aren't just on the animals.

A recent study in Zoonoses and Public Health (Pabilonia et al 2013) provides more evidence. Researchers visited poultry exhibits at agricultural fairs in Colorado and collected samples from areas like cages, feed, floors and tables, i.e. areas where there was direct contact with birds and areas that visitors might touch. They were able to grow Salmonella from 10 of 11 fairs that they visited. Overall, greater than 50% of surfaces that they tested were contaminated with Salmonella. It wasn’t surprising that finding Salmonella was fairly easy, but that number is pretty high.

Does this mean that poultry exhibits should be banned? No. But it indicates that there is some risk, presumably with any poultry exhibit anywhere.

How can you reduce the risk?

  • Don’t eat or drink in poultry exhibit areas.
  • Wash your hands after leaving (even if you don’t touch anything).
  • Don’t take in items that might go into a child's (or anyone's) mouth (e.g. sippy cups, pacifiers).

Particular care must be taken with kids less than five years of age, elderly individuals and people with compromised immune systems. That could mean staying out of the exhibit altogether, or just being extra diligent about the basic measures listed above - it really depends on the scenario, the ability to follow these practices, and the level of risk aversion.

What should fairs do?

  • Take measures to reduce environmental contamination, such as housing birds in such a way that bedding doesn’t get spread everywhere.
  • Regularly clean environmental hand contact surfaces (e.g. railings, arms on seating/benches).
  • Provide signs to make sure that people know what to do (e.g. wash their hands, don't eat and drink).
  • Supervise exhibits.
  • Provide good hand hygiene facilities.

These measures aren’t too hard to implement and they’re much better than dealing with an outbreak.


All about tapeworms and Echinococcus

The latest Worms & Germs infosheets are all about some common and not-so-common members of a particular group of parasites: tapeworms. There are a number of different groups and species of tapeworms that can infect pets, people, and other domestic animals, and sorting through which is which can be tricky, so we created a Tapeworms infosheet to help sort out the details.

There is one group of tapeworms in pets that is a particular concern from a zoonotic disease perspective. These parasites belong to the genus Echinococcus. Normally these tapeworms circulate in the wildlife population, mostly in wild canids such as foxes and various prey species, but they can also affect domestic dogs (and sometimes cats) that scavenge or hunt the same prey. In most cases the pet does not become sick, but people who are exposed to the tapeworm eggs in the pet’s feces can develop slow-growing cysts known as hydatid cysts or alveolar hydatid cysts. Over time these cysts can become very large and difficult to treat. There is also now evidence that one Echinococcus species (E. multilocularis) may be spreading - in 2012 a dog in Ontario was found to be infected with the cystic form of E. multilocularis (which is unusual in itself), but the animal had no history of travel outside of the province, therefore it was most likely infected via local wildlife.

Because echinococcosis can be such a severe disease in people, we created an additional infosheet focused on just Echinococcus. Both infosheets can be found on the Worms & Germs Resources - Pets page.

Image: Dozens of Echinococcus granulosus tapeworms from the small intestine of a dog.  Although these adult tapeworms are tiny compared to some other species, this species can cause significant problems in people through the formation of hydatid cysts.  (Photo credit: Ontario Veterinary College)

Irony...bad luck...rabies-magnet...pick your terminology

The word "ironic” gets used a lot, often incorrectly.

Alanis Morrissette’s hit song “Ironic” is a great example of this since she (ironically?) describes situations that aren’t really ironic, they just suck (i.e. winning the lottery and dying the next day isn’t ironic, it’s just bad luck).

Anyway, irony doesn’t have much to do with the topic at hand, apart from picking on the title of a news report “In ironic twist, dogs of local rabies survivor Jeanna Giese are exposed to bat that tested positive for the disease.” It’s not really ironic, but it’s an interesting story.

If anyone knows about the implications of rabies, it’s Jeanna Giese. She will forever be remembered in the medical world as the first person to be successfully treated after developing rabies. When she was 15, she picked up a (rabid) bat and was bitten. Not knowing any better, the family cleaned the bite wound but did not take her to a doctor. A little over a month later, she developed neurological disease. At that point in time, rabies was still called "invariably fatal," but she was treated with an experimental protocol that involved, among other things, putting her in a coma and treating her with antiviral drugs. Remarkably, she survived. More remarkably, she didn’t just survive, she was able to go back to school, learn to drive and function normally. (As a result of her miraculous recovery, rabies is now termed "almost invariably fatal.")

Jeanna has become an advocate for both animals and rabies awareness, using her personal experience to get her message across. Well, now she has one more personal experience to add to her repertoire.

Recently, she found a bat in the enclosure that houses two of her dogs. The bat was dead and covered in dog bite marks. Presumably in no small part because of her heightened awareness of rabies, she submitted the bat for rabies testing - and it was positive. So, her dogs were considered exposed. “How many people in the entire world can honestly say that a rabid bat has affected their lives twice in nine years?” she asks. Fortunately, her dogs were vaccinated against rabies and therefore they only have a relatively short observation period at home to go through, as opposed to a strict six month quarantine or euthanasia.

Awareness of rabies is the key, whether you’re trying prevent exposure of yourself, your family or pets. It’s also an area that needs improvement.  As Ms. Giese said, "It's not surprising people know little about rabies... I didn't. You can't walk into a counselor's office and just pick up a pamphlet about rabies. I'm teaching kids that it's out there and what to do. Had I known what I know now, I would have made a different decision (about picking up the bat in 2004)."

Ironic? No, but a good story nonetheless.

US Rabies update

ProMed-mail usually posts a monthly recap of rabies cases in the US. The most recent one (like most of them) doesn't have anything too astounding, but it provides some good reminders.

Skunk attacks baby

A five-month-old baby that was outside in a car seat was bitten in the face several times by a skunk. The skunk was killed and tested positive for rabies. This is a high risk situation because it involves a young child and bites to the face. Because of that, the incubation period would potentially be very short so prompt treatment of the baby would be needed (and presumably post-exposure treatment was started right away).

Rabid family dog attacks

Five people were bitten by their pet dog, which was subsequently identified as being rabid. This should be a reminder that rabies exposure is still a concern with pets, that pets should be vaccinated, and that rabies exposure must be considered after any bite.

Fox + bite + electric hedge clippers = ...

A Virginia man was bitten by a fox, and he then killed the fox with hedge clippers (probably not a pretty sight). The bite did not break the skin (although the man did pass out afterward... not sure whether that was from fear of the bite or the aftermath). Anyway, the fox is only being reported as "presumed" rabid. Given the time frame of the encounter and the press release, I would have thought they'd know the rabies status of the animal, if it was tested. In the absence of knowing that the fox was not rabid, they'd have to assume that it was and take appropriate measures. Since the bite didn't break the skin, the bite shouldn't be considered rabies exposure; however, depending on how gory the subsequent fox-clipping was, there might have been exposure to infectious tissues by other means, and post-exposure treatment might have been indicated anyway.

Calf bites, animal health personnel screw up

Rhode Island health officials are trying to track down anyone that might have been exposed to a calf that lived next door to a popular ice cream shop. The calf bit someone and was quarantined. However, it died the next day and in a pretty major screw-up, local animal health officials didn't notify the state until 3 days later. By that time, the calf's body was too decomposed to be tested for rabies. So, it must be assumed that the calf was rabid.

A few take home messages:

  • Rabies is still around... think about it.
  • Vaccinate your pets.
  • Avoid contact with wildlife, and if wildlife is behaving abnormally (e.g. attacking), rabies must considered.
  • Make sure all bites from mammals are reported so that the need (if any) for rabies post-exposure treatment can be determined.
  • Hedge clippers are not the best euthanasia tools.

Why Finnegan's an indoor cat

I grew up with cats, and they were all indoor/outdoor. I never really thought about it since that was just the way things were done. Yet, as much as he’d like to convince us otherwise, our current cat Finnegan is an indoor cat. There are a lot of reasons for this.

One reason for keeping Finnegan in the house is zoonotic disease prevention. I was recently giving a talk about "Pets and immunocompromised owners" at the American College of Veterinary Internal Medicine forum, and a recurring theme for reducing the risks associated with cats was keeping them inside. (Want to reduce the risk of the cat being exposed to Toxoplasma? Keep it inside. Want to reduce the risk of Salmonella exposure? Keep the cat inside...).

Another important reason is the animal's own health:

  • Cat vs car rarely ends well for the cat, and untold thousands of cats meet their ends on roads every year.
  • Cat vs cat isn’t as bad but can lead to cat bite abscesses and transmission of a few different pathogens such as feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV).
  • When outside, cats can also be exposed to various insect borne pathogens that can be of concern. This kind of risk varies between regions, with areas such as those where there are ticks carrying Cytauxzoon felis (a parasite normally carried by bobcats) perhaps being the biggest concern.

Wildlife is another concern, in two ways. Just like with cars, cat vs larger critter such as a coyote rarely ends well for the cat. From an ecological standpoint though, greater problems occur from cats killing smaller wildlife. It’s been estimated that free-roaming domestic cats kill billions (yes, Billions) of birds and small mammals every year. I won’t go into all the details here, but there’s a good article on the Canadian Cooperative Wildlife Health Centre’s website about the impact such avid feline predators can have on local ecology.

Some people would argue that cats are better off going outside. Looking back at the cats with which I grew up, a lot died early because they were allowed to go outside. It’s hard for me to justify the risk to the cat, wildlife and public health for some anthropomorphic “he’d really enjoy being outside” argument.


Bartonella from needlesticks

Something I often discuss when doing infection control talks is needlestick injuries. The contrast between the approach to needlestick injuries (and blood exposure in general) in veterinary and human medicine is pretty astounding. In humans, there are strong educational campaigns, careful reporting, testing and treatment protocols, and increasing use of "safety engineered sharps devices" like retractable or guarded needles. In veterinary medicine, getting stuck with a needle is often considered "part of the job" and "no big deal". A study we did of veterinary technicians a few years ago found that 74% of techs had suffered a needlestick injury in the past year (Weese & Faires, Canadian Veterinary Journal 2009). I’ve had many such injuries during my career, pretty much all before I started to focus on infection control, and I honestly didn’t put much though into them (beyond ”oh crap, that hurt!”).

There are some valid reasons for the differences between human and veterinary medicine when it comes to needlestick injury prevention, not the least of which is the risk of HIV and hepatitis B virus transmission. In some ways, getting people to pay attention to needlesticks in veterinary medicine is tough because we don’t have viruses such as these in our patients. Needlesticks can cause pain, significant trauma and rarely severe (including fatal) problems (e.g. from drug reactions or infections), but the vast majority are rather inconsequential. However, a line that I frequently use is: “We don’t have an analogue of HIV or hepatitis B… at the moment. New diseases continue to emerge and you never want to be the index case.”

Is this really a risk? Well, yes. Beyond some new disease that could emerge and be a serious problem, we also have new issues being identified from bugs that we’ve known about for a while. Recent concern has been expressed about transmission of Bartonella species. This is a strange group of bacteria that are commonly found in cats and dogs. Bartonella henselae is the cause of cat scratch disease, a well-known problem, but Bartonella are attracting a lot more attention these days because they are being implicated in a range of often vague human diseases. Bartonella can be found in the blood of healthy cats (and to a lesser degree dogs), raising questions about whether a needlestick could result in transmission of these bacteria to people.

Two case reports highlight these concerns.

The first one (Lin et al, Vector Borne and Zoonotic Diseases 2011) tells the story of a veterinarian who developed a fever of unknown origin and back pain. Ultimately, he was diagnosed with Bartonella henselae infection which they speculated may have been transmitted following a needlestick injury. The needlestick link is weak here though. As a veterinarian, there are lots of other opportunities to be exposed to Bartonella henselae. It’s not uncommonly present in the blood of healthy cats and the main route of exposure is through fleas. Fleas feed on the cat, pick up the bacterium, then shed it in their feces. Cat scratches are a common route of transmission as the contaminated flea feces may be driven into the body. The veterinarian in the report didn’t recall having been bitten or scratched recently, but recall bias is an issue since scratches are common and often forgotten if not severe. Flea exposure wasn’t queried. Also, the needle with which he was stuck was a clean needle that had not been used yet. It still could have been the source of infection if it acted like a scratch, driving infected flea dirt on his skin into the wound, but I don't think this report is very strong.

The second article (Oliveira et al, Journal of Veterinary Internal Medicine 2010) describes infection by a different Bartonella speces, B. vinsonii berkhoffii, also in a veterinarian. The person was taking an aspirate from a mass with a needle and syringe and was poked in the finger as the dog was struggling. Five days after the needlestick, the person was still healthy. A blood sample was taken from the person and Bartonella was not found. However, by day 34 after the incident, the veterinarian reported having had frequent headaches for the past week, fatigue and some intermittent numbness in one arm. Bartonella vinsonii berkhoffii was detected in the person’s blood at that time. There was also an increase in anti-Bartonella antibodies between the two blood samples, which supports an active infection. The bacterium was not found in the tumour aspirate, but as a dog-associated bacterium and one that is rarely identified in people, and with the timing of exposure and disease, it’s quite suggestive that the needlestick was the source.

These may just be two reports, but they may just be the tip of the iceberg, because disease caused by Bartonella infections is often vague and probably routinely gets missed. There’s also increasing evidence of wide-ranging types of infection that may be overlooked, so people (and particularly veterinary staff) need to be aware and pay attention to the potential risk.

Needlestick injuries shouldn’t be considered part of the job. There are risks, but a little common sense goes a long way.

Information sheets on both cat scratch disease and needlestick injuries (and how to avoid them) are available on the Worms & Germs Resources - Pets page. 


Shelter dog MRSA panic

Several dogs at a Miami humane society were quarantined last week because of concerns (or possibly panic/over-reaction) about methicillin-resistant Staphylococcus aureus (MRSA). MRSA in dogs is a concern because it's an important cause of infection in both people and animals. However, it's an opportunist, meaning it typically doesn't cause disease when it encounters a normal, healthy person or animal. In fact, a small percentage (~1-3% probably) of the human and pet populations carry this bacterium in their nose without knowing it, and the vast majority never suffer any consequences.

It's often tough to strike the right balance when dealing with an MRSA issue. We want people to realize that it's an important cause of disease and that it needs to be taken seriously, but we also want people to keep it in perspective and not freak out.

The Miami shelter report seems to be on the "freak out" side, particularly on the part of the local media.

It's not really clear what's happening based on this fairly poor article. The shelter's Chief Medical Officer, Dr. Maureen Swan, is quoted as saying there's a routine respiratory disease cluster in the shelter, but MRSA rarely causes respiratory disease in dogs. The article then adds Dr. Swan said it was "not the highly contagious MRSA virus." I have no idea what that means, and MRSA is not a virus.

My suspicion is that they have respiratory disease caused by the typical bacterial and/or viral pathogens that are commonly found in shelter dogs, and that they isolated a methicillin-resistant staph that just happened to be hanging around in that particular dog (since such bacteria normally live in the mouth, nose and skin). It's also not really clear whether this is MRSA. The article says MRSA, but the first thing I ask when I get an advice call about MRSA is "what staph species does the report say was isolated?". Most often, it's Staphylococcus pseudintermedius or another staph. These bugs can still be relevant, but they don't carry the same human health risk as MRSA, so it's important to know exactly what's been found.

Finding MR staph, including MRSA, isn't unheard of in a shelter. It's just one of many reasons that good general infection control practices are needed in these facilities. When MRSA is found, taking some extra precautions is reasonable because of the potential for disease and transmission to people, but too often people panic. It's understandable based on concern about MRSA and the scary stories people can find with a quick Google search. Not uncommonly, there's a combination of an short-term overly aggressive response while at the same time failing to improve basic infection control practices, which are the most important.

More information about MRSA can be found on the Worms & Germs Resources - Pets page.

Bloodstream infections in horses from contaminated fluids

The latest edition of the University of Guelph Animal Health Laboratory's newsletter contains an interesting report about 4 horses that died over the past few years from what was suspected to be contaminated intravenous fluid solutions. These cases were dead horses that were submitted for post-mortem examination from three different farms, so if anything, this could be an underestimation of the problem.

The first two horses were from the same farm. They were young Thoroughbreds that were routinely treated with intravenous electrolytes, vitamins and minerals (whether by the trainer or veterinarian is unknown). The first horse was found with its head hanging low after treatment. It later developed seizures and died. The second horse showed similar signs. The bacterium Klebsiella pneumoniae was isolated from a few different tissues of the first horse, as well as one of the "jugs" used to administer the fluids. The second horse had the same general lesions as the first, but Klebsiella wasn't isolated; however, this may have been because the body wasn't in great shape by the time it was submitted to the lab, and various other bacteria had overgrown the Klebsiella, making it difficult to isolate.

Another case was a young Standardbred that died after receiving intravenous fluids with vitamins, and a glyceryl guaiacolate jug. It had signs of bloodstream infection (septicemia) and Klebsiella oxytoca was isolated from multiple organs. Various bacteria were isolated from remnants of fluid in treatment bottles.

The final case was a five-year-old Standardbred that died after receiving a home-mixed vitamin jug. It had lesions similar to the other horses and consistent with a bloodstream infection. Klebsiella oxytoca was isolated from multiple organs.

Contamination of multidose drug vials or fluid solutions can occur if bacteria are inoculated into the bottle with a needle when a dose if withdrawn. We've shown this happens with multidose vials in a hospital situation, and of the farm it's even more likely to occur because it's a dirtier environment and, in the case of farm personnel, individuals have less experience with sterile technique. Fluid solutions can be contaminated in the same manner or when something is added to the fluids (e.g. vitamins). Contamination of reused fluid administration sets (i.e. fluid jugs/bags and the IV tubing) is quite likely, and that's why use of sterlie, single-use administration sets is recommended. Adverse events from a little bit of contamination are uncommon, but as shown here, they can happen and they can be severe. There's no information about what contributed to the contamination in these cases, but it's almost certain that poor infection control practices were at the root of the problem. Trying to save money by skimping on sterilization, reusing items without proper care, and using poor hygiene practices in general can end up costing much more.

Brucella canis infection from a puppy

An abstract for the upcoming CSTE (Council of State and Territorial Epidemiologists) conference in California describes a rare but concerning case of Brucella canis infection in a child. All I have to go by is the abstract (since the meeting hasn’t happened yet and I won’t be there anyway), but it provides an interesting outline.

Brucella canis is a bacterium that is (not surprisingly, given the name) associated with dogs.  It’s present in dogs internationally, with higher rates of infection in strays and shelter dogs. It can cause a variety of problems in dogs, most often abortion, stillbirth and birth of weak puppies, but also things like reproductive failure and genital inflammation in males, and diskospondylitis (a kind of back problem). After a dog gets infected, the bacterium can localize to genital tissues, where it tends to hang out, resulting in intermittent shedding of B. canis in urine, vaginal discharge, fetal fluids, semen and, to a lesser extent, some other tissues. Humans can then be exposed via contact with these fluids. The main risk to humans comes from handling breeding dogs, particularly female dogs that have aborted puppies. However, people seem to be relatively resistant to B. canis infection, and there are actually only a small number of reports of human infections with this bacterium.

The risk to average pet owners is very low, but as this report shows, low doesn’t mean zero. This abstract deals with an infection in a 3-year-old child from New York city. The family had acquired a Yorkshire terrier puppy from a local store in March 2012. As is expected, there was close contact between the child and the puppy.

Near the end of April, the child was taken to an emergency room because of fever and difficulty breathing. Bacterial infection wasn’t the main suspect and he was discharged without antibiotics (presumably having improved from how he was at the time of admission). However, a blood culture was collected and it came back positive for Brucella canis. While the boy had been doing well, he was treated with 45 days of antibiotics to try to make sure the bacterium was eliminated, since it can cause chronic problems.

In a step that’s too often overlooked in zoonotic disease occurrences, there was an investigation of the source. That’s not surprising since this is a rare and concerning bacterium, and it’s pretty clear that pet contact tracing is required. The puppy was healthy but the bacterium was isolated from its blood. Because of the test result, the puppy was euthanized. (There’s no mention of whether this was at the owner’s request or based on the recommendation of public health personnel.)

The source of the puppy was a major concern, since it’s important to make sure that there aren’t other infected puppies around. The puppy came from a "commercial breeding facility" in Iowa - yet another instance of the potential for widespread national and international distribution of pathogens from large commercial pet operations. The facility was quarantined but there’s no more information in the abstract about whether other positive animals were found, whether infected puppies may have been sent elsewhere in the country, and what measures were taken to correct the problem.

A littermate of the New York puppy was sold by the same store. It also tested positive for B. canis and was treated.

This is a rare incident, but it highlights some points for me:

- Large commercial breeding facilities for dogs are unnecessary and create increased risk of disease in animals and by extension people. Yes, this could occur with a small private breeder, but the more animals, the more risk of infectious disease, and the larger the facility, the larger the potential impact should a disease issue develop.

- Proper counseling of people whose pets are diagnosed with a zoonotic pathogen is needed. I don’t know the story at all about why the first puppy was euthanized, but it might have been avoidable. What to do with animals that are healthy but shedding potentially concerning pathogens is a tough area to address. That’s particularly true for a bug like B. canis, since it can be hard to eliminate.

- Good communication is needed between the medical field, public health, veterinary medicine and the public. It’s hard to say how smoothly this investigation actually went, but it shows a good response to a rare but potentially serious problem.

- People that sell animals need to keep accurate contact information from purchasers. It’s good to see that they were able to track down the owners of the original puppy's infected littermate. Contact tracing is important with infectious diseases and it can be exceedingly difficult at times.

- There’s an inherent risk in pet ownership. We know that and have to accept it. The child was high risk because of his age. That doesn’t mean we don’t let kids have pets, but we have to understand the risk and use some basic hygiene practices to reduce that risk. Would it have had any impact on this case? Who knows, but it never hurts to improve.

African dwarf frog Salmonella outbreak recap

I’ve written about the African dwarf frog and Salmonella issue before, but it’s worth a recap since an overview of the 2008-2011 outbreak was recently published in the journal Pediatrics (Mettee Zarecki et al 2013). The fact that reptiles and amphibians can carry Salmonella is nothing new, nor is the fact that outbreaks of disease can occur in people who have contact with them. However, the scale of outbreaks associated with pets can be impressive.

Here are some highlights from the paper:

  • Between January 1, 2008 and December 31, 2011, 376 people were diagnosed with salmonellosis caused by the outbreak strain, a type of Salmonella Typhimurium.
  • As is common in pet-associated outbreaks, kids bore the brunt of this one. The mean age of infected individuals was 5 years, and 69% were children under the age of 10.
  • Severe disease wasn’t uncommon - 29% of people were hospitalized, half of those being kids less than 5 years of age. Fortunately, no one died.
  • During a preliminary study, when they compared people who got sick with a group of healthy controls, they found that people who reported exposure to any aquatic pet were almost 5 times as likely to have salmonellosis. When that was narrowed down to exposure to just frogs, the risk went up to 12.4 times higher than healthy controls.
  • When they looked at people who were sick and reported exposure to frogs, only 27% reported having touched a frog, with 46% reporting having fed a frog, 59% having had contact with a frog’s habitat and 60% having had contact with water from a frog’s habitat. Twenty-three percent (23%) reported cleaning the frog’s habitat in the kitchen sink, and 35% in the bathroom sink. This tells us some very important information. It tells us that direct contact with frogs or their environment is a high risk behaviour. However, direct contact isn’t required to get sick. While the frog may stay in its habitat, Salmonella may not. Cleaning habitats in kitchen or bathroom sinks is a high risk activity, because it can result in contamination of common human-touch surfaces and items that go into peoples’ mouths (e.g. toothbrushes, cups).
  • Often, disease occurred not long after a new frog was obtained. The median time from purchase of a frog to disease was 30 days (range 5-2310 days).
  • Only 17% of people interviewed reported knowing that frogs can carry Salmonella. Over twice as many knew there was a risk from reptiles. This shows there needs to be more education of people who buy animals such as frogs. Pet stores should be required to provide some basic public health information. Pet owners should also take initiative and research potential new pets, including how to care for them and how to reduce the risk of zoonotic infection.
  • The outbreak Salmonella strain was found in the environment of some patient homes (not surprisingly), an African dwarf frog vendor (potential source of infection), a large-scale African dwarf frog distributor (a great way to spread an outbreak across the continent) and a daycare centre (that never should have had an amphibian in the first place!).
  • One breeding facility in California was the likely source. With centralized, large-scale breeding and warehouse-style distribution of pets (of various species, not just frogs), we’re seeing more large-scale outbreaks like this.

More information about African dwarf frogs can be found on the Worms & Germs Resources - Pets page.


Another Australian bat virus in horses

As if horse owners and veterinarians in Queensland need another infectious disease challenge.....

Recently, a horse in southwest Queensland was diagnosed with Australian bat lyssavirus infection. This virus, which is similar to rabies, is present in some bats in Australia. It can be transmitted to people from bats, causing fatal disease, but human infections are very rare. Even though it's rare, it warrants attention because the disease is so severe.

Finding an infected horse is surprising in some ways, because the virus has never been detected in this species before. However, a virus that's present in bats can certainly find its way into a horse, and we already knew that a closely related virus (rabies) can infect horses. So, maybe it's not that surprising afterall.

In this case, the horse was suspected of being infected with Hendra virus initially. While Australian bat lyssavirus can kill people, this diagnosis was actually much better than Hendra virus infection, because horse-human transmission of Hendra is a major concern. Hendra virus infections have high fatality rates and, perhaps most importantly, there are no effective preventative measures that can be taken after Hendra virus exposure. Since Australian bat lyssavirus is so closely related to rabies virus, rabies post-exposure treatment can be used in this case (and is probably effective).

It's unclear whether an infected horse poses much risk to people. The very small number of human Australian bat lyssavirus cases have occured in people who were bitten or scratched by bats. Since this is the first equine case, it's not known if affected horses shed large amounts of (or any) virus. People who had contact with the horse were identified and offered post-exposure treatment. It's reasonable to consider this situation like rabies exposure in the absence of more evidence, and treat people who were bitten or otherwise may have gotten virus-contaminated saliva into their tissues via broken skin or mucous membranes.

Is this the start of yet another new problem?

Most likely, this is just an example of the rare scenario of a virus infecting an atypical host, not the start of a new, common problem. However, it's worthy of attention in case the virus has changed or there is now a specific virus type that can more easily infect horses (both very unlikely). This case also shows the importance of thorough diagnostic testing, particularly when an animal has severe disease.

If you don't look, you don't find.

If you don't find, you can't act.

Cat scratch disease info sheet

We've just posted a new info sheet about cat scratch disease (CSD), which is caused by a bacterium (Bartonella henselae) commonly carried in the bloodstream of healthy cats. Signs of CSD in people can be quite non-specific, so (as always) it's important to let your physician know if you've been bitten or scratched by a cat if you're feeling ill, so that CSD is considered. Other than proper training and handling of cats to avoid bites and scratches, the next most important component of CSD prevention is flea control. 

You can read more about CSD and B. henselae on the new info sheet, which you can find along with all our other info sheets on the Worms & Germs Resources - Pets page.  You can also read about CSD in the posts in our archives.

Chicken diapers...even I couldn't make this one up

I have three kids that are all now (thankfully) past the diaper stage. I have no idea how many diapers I changed, but I don't have a huge desire to start doing it again, especially for chickens.

Yes, there are now diapers for chickens.

I understand the whole urban chicken concept. I don't actually have many issues with it if it's done right - but that's a big IF, unfortunately. Keep your chickens on your property, don't do it if you have young kids or other high risk individuals in the household, use good basic hygiene practices, feed them right, don't get roosters, and don't run screaming to the newspapers or local politicians if some get eaten by carnivorous urban wildlife. The nuisance and risk of backyard poultry can be limited.

Live chickens inside the house... that's another story.

Chickens aren't house pets in my world. I'm not sure if the chickens benefit at all from living in a house with people, and it's probably actually detrimental in many ways. I'm not sure what the benefit is to people either. Although I haven't seen any studies on this specific topic, it stands to reason that keeping a chicken indoors would be associated with a fairly high risk of widespread contamination of the household with bacteria like Salmonella and Campylobacter, two bugs that cause millions of infections in humans every year.

I'm all for risk mitigation, including using creative (and sometimes off-the-wall) measures - but diapers for chickens?  Not so much.

Yet, Pampered Poultry makes diapers for your indoor chickens, and not just run-of-the-mill diapers: they're (allegedly) both functional and fashionable. This isn't the only company that sells chicken diapers either, much to my surprise.

One website states "Our chicken diapers are not just for the fashion obsessed hen. They offer your and your home protection against the inevitable! Our diapers fit comfortably and allow you to enjoy your birds in the house or car [car?] without worry."

Does using chicken diapers make sense?

I have a hard time believing these diapers are very useful. They probably do reduce the burden of pathogens that are deposited in the environment, but they are presumably far from 100% effective at containing all of a bird's droppings. It's also likely that chickens are contaminated with these bacteria on other parts of their bodies. Thinking you've eliminated the risk of household contamination from your pet poultry by using diapers isn't logical. The diapers also need to be changed (risk of more contamination) and disposed (don't we have enough waste already?) or washed (risk of cross-contaminating other items).

If you want fashionable chickens, go ahead and dress them up in diapers. Nothing says haute couture like a chicken walking around the living room in pink floral undies. Just don't convince yourself that you're reducing the infectious disease risk for other animals and people in the house. Better yet, let the chickens be chickens and keep them in a proper coop outside. I've seen too many indoor goats, pigs, miniature horses and other species with profound health problems from owners thinking they're just like people.

Apart from diapers, the store also sells "saddles" for the chickens. I'm not even going to start on that one.

Methicillin-resistant staph in animals meeting

Equine herpesvirus in Ontario

I’ve received a lot of emails over the past 24 hours about the recent report of equine herpesvirus type 1 (EHV-1) neurological disease in an Ontario horse. The two main questions are whether there’s an outbreak and whether horse owners in Ontario should be concerned.

I don’t have any firsthand knowledge about this case (or any information beyond what’s been written elsewhere), but as far as I know, this is just a single sporadic case. That doesn’t mean an outbreak can’t occur, but most often, these just occur singly.

Whether there’s cause for concern is a tough question to answer. Yes, EHV-1 can be a serious problem, causing neurological disease in adult horses, abortion in pregnant mares, and severe disease in neonatal foals. Yet, at the same time, it’s an endemic disease that most often occurs as sporadic cases rather than large outbreaks (people just don’t hear about single cases as often, although they are now reported a lot more than they were a few years ago). The EHV-1 virus is very common and can be found in its dormant form in a large percentage of horses, so it’s not like some pathogens with which an unexposed population can suddenly be threatened when a single case is identified. In general I pay close attention to EHV-1 cases, but they are not a cause for panic. If a case occurs, we need to see if some broader issue is at play, and put steps in place to limit the problem, but we don’t need to cause massive disruption. In short, we want to ensure that good surveillance and infection control measures are in place, but not freak out in the process.

People have really taken a 180 degree turn in how they handle EHV-1 over the past 10 years or so. I don’t think we see EHV-1 neurological disease any more than when I was a resident. Back then, we saw sporadic cases and the odd small cluster, and people didn’t get too worked up about it in terms of the risk of transmission. Outbreaks, such as one I can remember associated with a large Ontario Standardbred yearling sale, certainly got lots of attention, but it was short-lived. Things changed (for good reason) based on some large, high-profile outbreaks in the last decade.  It’s not known why such outbreaks now seem to be more common.

Anyway, if you live in Ontario and have a horse, don’t panic. Your horse is probably at no greater risk today than it was last month, assuming it wasn't in contact with the affected horse (which was diagnosed in early April). Virtually every horse is at some degree of EHV risk every day, but the odds of disease occurring are very low.

Some key prevention tips include:

  • Use good general infection control practices to reduce exposure of horses to pathogens brought in by newly arrived horses.
  • Observe your horses regularly and if there are any problems, isolate the horse and have a veterinarian examine it ASAP.
  • When travelling to shows, races or other events, take measures to reduce direct and indirect contact between horses.


Is MRSP in a dog a risk to the family?

This is an increasingly common question, because MRSP is increasingly common. I've had two calls about it this week, and it's only Wednesday.

It's a good question to ask because MRSP (methicillin-resistant Staphylococcus pseudintermedius) is a highly drug-resistant bacterium that causes a lot of problems in dogs, and because of the high profile of its relatively distant relative, MRSA (methicillin-resistant Staphylococcus aureus), in people.

The short answer is: Yes, MRSP can infect people

BUT... (and it's a big and important but):

It's exceedingly rare and the overall risk is very low.

Here's my reasoning behind this answer:

1) Reports of MRSP infections in people are very rare.

  • I think there are only two such published reports at the moment. There have probably been more infections than the number that are published, and there's the potential for MRSP to be misdiagnosed by some human diagnostic labs (meaning some MRSP infections may be mistaken for something else), but I think it's fair to sayl this a very rare infection in humans.

2) MRSP is not well adapted to infect people.

  • MRSP is not inherently any more likely to cause infection than methicillin-susceptible strains of S. pseudintermedius (MSSP).
  • MSSP can be found on basically every dog.
  • A large percentage of the human population has contact with dogs every day.
  • So, a large percentage of people encounter MSSP every day. Yet, reports of MSSP infection in people are very rare. To me, that indicates that this bacterium is poorly adapted to be a human pathogen.

3) Veterinary dermatologists are not extinct.

  • MRSP is very common in dogs with skin infections. In some practices, it's the main cause of these infections.
  • That means veterinary dermatologists encounter a lot of MRSP every day.
  • I have yet to hear a report of a veterinary dermatologist getting an MRSP infection (carriers yes, disease no). I wouldn't be surprised if there actually have been some infections, but dermatologists can be considered the canaries in the mine when it comes to human MRSP risk, and I'm not aware of any real issues.

4) All dogs are biohazardous

  • While this may not comfort the people calling me who are worried about the health of their families, it's important to put things into perspective. All dogs are carrying multiple microorganisms that could cause disease in people under the right circumstances (and the same goes for all cats, horses, people etc. for that matter).
  • If you screened the average dog, you'd find things that are of greater concern that MRSP. In fact, MRSP probably barely cracks my "Top 10 List" of things I'm worried about the average dog spreading.

So, yes, there's a risk of MRSP infection when a person has contact with a dog infected with or carrying MRSP. There's also a risk of infection from methicillin-susceptible S. pseudintermedius, the version of the bug that basically all dogs carry, and a whole range of other bugs.

There will never be a zero-risk pet when it comes to zoonotic diseases. It's impossible. The risks may be very low but we can never eliminate all risk, just like we can never eliminate all risk from walking down the street. For some people, that slight degree of uncontrollable risk might be too much to handle, and they probably shouldn't own a pet. For most, the positive aspects of pet ownership outweigh the risks, and some basic hygiene practices (e.g. handwashing, avoiding licking, avoiding contact with the dog's mouth, nose and bum) can reduce that already low risk even further.

Hookworm info sheet

While this morning's -7C temperature and snow don't exactly make me think about sandboxes or wandering around barefoot, warmer weather will presumably occur someday and the risk of outdoor exposure to parasites will start up again.

Since nothing says summer like hookworms, here's a new info sheet all about hookworms, including information on cutaneous larva migrans. The sheet can also be found on the Worms & Germs Resources - Pets page, along with info sheets on many other topics.

Bad headline, worse disease

Business Mirror, a Philippine news website, had a recent article entitled "Rabies: deadlier than ever". That's a bit like saying Decapitation: now an even worse idea. Rabies isn't 'deadlier than ever,' since it's hard to get deadlier when the disease is already almost invariably fatal.

Anyway, beyond quibbling about the title, there are some interesting parts to the tragic story.

The article describes the death of a young boy. He was attacked by a dog while playing in his front yard in the Philippines. After the attack, he was taken to the hospital where, while he treated for some large scratches, he was not treated for rabies exposure because there were no bites.

This isn't too surprising, since it's an area in which there are some education gaps and misconceptions. The main risk for rabies transmission from dogs is from bites, since the virus is present in high levels in saliva, and bites directly inoculate saliva into the body. Rabies contaminated saliva deposited on intact skin isn't a risk.  Rabies virus shouldn't be hanging out on a dogs paws, so it's easy to see how the transmission risk from scratches might be overlooked. However, during an attack, saliva contamination of the skin and a scratch that breaks the skin can both occur, thereby inoculating rabies virus into the body just like a bite.

Presumably that's what happened here, because 2 months after the attack, the boy developed rabies. It started with severe itchiness over the site of the scratch, and he was dead two days later.

We can't play around with rabies. If there's potential that an animal interaction led to rabies exposure:

  • The animal must be identified and either euthanized so its brain can be tested, or (if a dog or cat) quarantined for 10 days to ensure that it does not exhibit any signs of rabies.
  • If the animal can't be identified and quarantined or tested (or if it's positive for rabies), proper post-exposure treatment is required.

More information about rabies can be found on the Worms & Germs Resources - Pets page.

MRSP infection in a person

Is MRSP zoonotic?” That’s a question I get all the time. MRSP (methicillin-resistant Staphylococcus pseudintermedius) is a canine staph (a bacterium) to which people are exposed all the time. Yes, it can infect people, but only very rarely, particularly when you consider how often they’re exposed. Nonetheless, human MRSP infections can occur.

My typical answer to the question is “Yes, but…” followed by an explanation of the overall low risk. My general line is:

  • It can be transmitted to people.
  • Human infections are very rare
  • There’s no use panicking over MRSP or being draconian when you have an infected animal.
  • At the same time, no one wants a highly resistant infection, so some basic measures should be used to reduce the risk of transmission.

Issues are also greater when people with compromised immune systems are involved, and a recent paper highlights this.

The paper (Savini et al, Journal of Clinical Microbiology 2013) describes MRSP infection in a 65-year-old man who was immunocompromised because of a bone marrow transplant. He developed a wound infection, and his physicians and the diagnostic lab did a pretty comprehensive study of the bacterium they isolated from the wound, ultimately determining it to be MRSP.

The man lived “close to a pet dog and farm cows," whatever that means. The dog was probably the source, but unfortunately (as is common) no efforts were made to see if the dog was carrying MRSP, to see if the cows were positive for MRSP (since this bug can rarely be found in cattle), or to type the isolate to see how it compares to strains that are typically found in animals.

Will this report change my answer to the first question? No. It gives me another example of a human MRSP infection, but such events are still exceedingly rare and this individual was highly immunocompromised, having graft-vs-host disease after his bone marrow transplant.

We don’t need to be afraid of MRSP, but we need to realize there is some risk, and the risk is presumably higher for certain people (e.g. very young, very old, people with compromised immune systems). We therefore need to use some basic infection control and hygiene practices to reduce the incidence of transmission of MRSP and other potentially harmful microorganisms from animals to people.

More information about MRSP can be found on the Worms & Germs Resources - Pets page.

'tis the season for hatching chicks (and hopefully not Salmonella)

Allegedly, spring is here. The foot of snow on the ground and minus double-digit temperatures don’t really convince me, but the calendar can't lie, I guess.

Anyway, spring brings with it many things, one of which is hatching chicks. I saw signs for them at a local farm supply store a couple of days ago, and perhaps not coincidentally, this week’s edition of CDC’s Morbidity and Mortality Weekly Reports provides an update on the 2012 human Salmonella outbreak that was linked to contact with chicks and ducklings from a single supplier.

This outbreak has been talked about before, but this report gives some final numbers.

  • Ultimately, 195 people infected with the outbreak strain of Salmonella Infantis were identified. (That’s probably a major underestimation too, since in outbreaks like this lots of people get sick but don’t have fecal cultures for Salmonella performed.)
  • 33% of affected individuals were children 10 years of age or less.
  • 79% of people who got sick reported contact with poultry in the week before illness started.
  • Birds were obtained from various feed stores or directly from hatcheries, and 87% of people that provided information about chick or duckling sources reported getting them from a single mail-order hatchery in Ohio.

Chicks and Salmonella go hand-in-hard. Chicks are high-risk for shedding the bacterium, and people can get infected by handling chicks or having contact with their environment. Children are at high risk for infection since they tend to have closer contact with chicks and because they are more susceptible to Salmonella. That’s why it’s recommended that kids less than 5 years of age not have contact with young poultry.  Day cares and kindergartens planning on their annual hatching chick programs… please take note.

The article includes some more recommendations.

  • Feed stores should use physical barriers (e.g., a wall or fence) between customers and poultry displays to prevent direct contact with poultry.
  • Educational materials warning customers of and advising them on how to reduce the risk for Salmonella infection from live poultry should be distributed with all live poultry purchases

Part of the last point is keeping young kids away from chicks and stressing good hand hygiene practices. Like most things in infection control, a little common sense goes a long way.


If I can't see it, it doesn't exist...and other fallacies

I write a lot about reptiles, and while it's usually in the context of their biohazardous nature, I actually like them. I've owned some before and it's not outside of the realm of possibility that we'll get more in the future (I might be safe with that statement since Heather doesn't read this blog. However, her co-workers that do will likely rat me out).

Reptiles can be good pets in some situations. The key is understanding and accepting the risk. That involves understanding the risks associated with reptiles, understanding the types of households where the risk is high, and knowing what to do to reduce the risk.

Denial isn't an effective infection control measure.

An interview in Oregon Live with the founder of International Reptile Rescue highlights this issue.

"And while reptiles have been associated with spreading salmonella (the CDC reports about 70,000 such cases a year) people are more likely to contract it from a dog, Hart says"

  • Reptiles are clearly higher risk when it comes to Salmonella. Reptile contact has been clearly and repeatedly shown to be a risk factor for human salmonellosis. Dogs and cats (and various other animals) are potential sources of salmonellosis, but while many more people have contact with dogs and cats, reptile contact is much more likely to result in Salmonella transmission. It only makes sense. Reptiles are at very high risk for shedding the bacterium. Dogs and cats rarely do (especially when they're not fed raw meat).

"She’s never seen a case in the 30-plus years she’s been working with reptiles."

  • Ok. So, since I've never actually seen influenza virus, I'll never get the flu?
  • I know a lot of infectious disease physicians who have had a very different experience. In fact, it's rare for me to talk to an infectious diseases physician without him/her providing details of various reptile-associated salmonellosis cases.

Talking about the risk of Salmonella shouldn't be taken as insulting or a threat to reptile enthusiasts. People should accept that the risk is present and try to minimize it. The article actually has some useful information along those line. "Just use common sense - wash hands thoroughly after handling the animal or its cage. A good rule of thumb is to keep hand sanitizer nearby. While children under age 5 should avoid any contact with reptiles, Hart doesn’t advise snakes for children under age 7 or 8 for fear they could unwittingly harm the creature."

Reducing the risk is common sense.  Keep reptiles out of high risk environments and use basic hygiene and infection control practices.

However, any semblance of common sense goes out the door when a rescue like this offers programs where you can pay them to bring reptiles to daycares, pre-schools and grade schools. So much for young kids avoiding contact with reptiles.

Reptiles aren't bad, they're just bad in certain situations. Common sense needs to be more common.

Pet treat recall questions

I tend not to write about recalls but the recent, large and expanding pet treat recall has lead to a lot of questions that are worth discussing. At last report, treats manufactured by Kasel Associates Industries Inc from April 20-Sept 19, 2012 were potentially contaminated with Salmonella and recalled.  Not surprisingly, most of the recalled treats are things like pig ears, bully sticks and jerky strips made from raw animal products. The impact on pets isn't clear beyond a vague statement about "a small number of complaints of illness in dogs who were exposed to the treats." Anyway, here are some common questions I've been hearing:

My dog ate a recalled treat, will it get sick? Maybe, but probably not. It's not clear how many treats were really contaminated, so it's quite possible that most products weren't contaminated. Furthermore, the dose of Salmonella that a dog ingests is important.  Low-level contamination is less of a concern, particularly in otherwise healthy dogs. The strain of Salmonella itself also plays a role since some strains seem to cause more serious disease or cause disease at lower doses than others. I haven't seen much information about the strain (or strains) involved here.

If my dog gets sick, what will happen? That's highly variable. Salmonella can cause disease ranging from vague (e.g. a little depressed and decreased appetite) to classical intestinal disease (e.g. diarrhea +/- vomiting) to rare but severe systemic disease (e.g. sudden death, bloodstream infection with subsequent overwhelming body-wide infection or focal infection of different body sites like joints).

Should my dog be tested for Salmonella? Not if it's healthy. The main question is what would be done with the result. If positive, it wouldn't mean that anything needs to be done or even that disease is likely to occur. A negative isn't very helpful either since a single sample is far from 100% sensitive. The key point is that we treat disease, not culture results. If the dog looks healthy, it's not going to be treated, regardless of the culture result. You'd also need to have the isolate tested to see if it's the same as the strain in the recalled treats if you wanted to determine whether treats were the source, and that testing is not readily available.

Should my dog be treated with antibiotics? As you can guess from the paragraph above - no. There's no evidence that antibiotic treatment of an exposed dog or a healthy carrier reduces the risk of disease or shortens the shedding time. In fact, it might even make things worse by disrupting the normal protective intestinal bacterial population, which might make disease more likely or make it harder for the body to eliminate Salmonella. Treatment might also encourage development of antibiotic resistance, something we don't need any more of with Salmonella.

What can I do to reduce the risk of disease? Not much. If a dog has eaten a Salmonella-contaminated treat, there's not really anything that can be done after the fact beyond watching for signs of disease.

So... what should I do? Relax and watch. The odds of a problem are low. If a problem develops, odds are it will be mild. That's not to say that severe disease can't or won't happen, it's just that it's unlikely and there's nothing that you can do after exposure anyway. Identifying signs consistent with early disease (e.g. lethargy, decreased appetite, diarrhea) and getting prompt veterinary care should help reduce the risk of complications or serious disease.

Hedgehog Salmonella update

I'm just back from vacation (luckily, with no infectious disease stories to write), but now I have to catch up on a few posts. One easy one that was waiting for me in my inbox was about Salmonella and hedgehogs.

I've written before about biohazardous hedgehogs, and more details about the US 2011-2013 multi-state Salmonella outbreak were reported in a recent edition of CDC's Morbidity and Mortality Weekly Reports. The outbreak was identified through recognition of a cluster of infections in people caused by the same, historically rare strain of Salmonella Typhimurium. Finding a cluster of the same strain, especially a rare one, suggests that there might be a common source, so an investigation ensued. Here are some highlights:

  • Twenty people from 8 states (Alabama, Illinois, Indiana, Michigan, Minnesota, Ohio, Oregon and Washington) were affected, although (as is typical) it's almost guaranteed that many more people were affected but not tested.
  • Young people were more often affected, with the average age being 13. The age range spanned from less than 1 year to 91 years of age.
  • Four people were hospitalized and one died.
  • 14/15 (93%) people interviewed reported direct or indirect contact with a hedgehog. That's a pretty strong indication that hedgehogs might be involved, since that number is wildly disproportionate to the percentage of people in the general population that have contact with hedgehogs.
  • Hedgehogs were obtained from various breeders, not from a single source.That's not uncommon since breeders often get animals from other breeders or suppliers and a point-source of infection further up the supply chain is likely.

For some reason, hedgehogs are high risk pets when it comes to Salmonella. High Salmonella shedding rates have been identified in studies of healthy hedgehogs and it's clear that contact with healthy carriers can lead to human infection. Hedgehogs should be considered alongside reptiles in terms of pets that should not be present in high risk households (households with kids less than 5 years of age, elderly individuals, pregnant women or people with compromised immune systems). Hedgehog owners should take care to avoid direct and indirect contact with feces and use good hygiene practices to reduce the risk of infection.

Equine MRSA in Israel - Different strain, same old tricks

It's been quite a while since the last post about MRSA in horses, but rest assured, it's still out there!  Not too surprisingly it's also spreading (or at least starting to be found) in new places.  A recent report in Veterinary Microbiology (Schwaber et al, 2013) describes an MRSA outbreak at a large animal teaching hospital in Israel.  It is the first report of MRSA colonization in horses in the Middle East, although it's possible (and quite likely) that there's more to be found.

The discovery of the problem had a pretty typical progression: there were two horses in the hospital with post-operative wound infections from which Staphylococcus aureus was cultured, and the isolates from both horses had similar antimicrobial resistance patterns, including resistance to all beta-lactam antimicrobials (= MRSA). Validly concerned about the potential for the MRSA to spread among horses and people in the hospital, an investigation ensued - in this case the National Center for Infection Control (NCIC) was actually called in to coordinate the operation.

  • They found MRSA in 12/84 (14.3%) horses, of which 11 were in the hospital at the time of sampling, and 1 had recently been discharged from the hospital.  Consider though that 44 of the horses sampled were simply from farms from which an MRSA-positive horse had come - so 11/40 horses in the hospital were positive - that's 27.5%!
  • 16/139 (11.5%) of personnel at the teaching hospital were positive for MRSA.  Fortunately there were no clinical MRSA infections reported in people.
  • The MRSA strain that was found in all the horses and most of the people was a very rare type - not the usual sequence type 8 (ST8) we're used to finding in horses in various other parts of the world.  This one was an ST5, spa-type t535, SCCmec type V, which is even rare in the human population.
  • The primary action taken to get the outbreak under control: increased infection control measures, including isolation of infected and colonized horses which were then handled with contact precautions (e.g. gloves, gowns), discharging horses from hospital as soon as medically possible to decrease transmission pressure, and having a nurse from the NCIC come in to instruct personnel on the measures to be taken, including emphasis on hand hygiene and increased use of alcohol-based hand sanitizer.
  • In this outbreak, decolonization therapy was prescribed for all colonized personnel.

The report does not mention whether or not personnel at the hospital were required to submit to being tested and undergoing decolonization therapy.  This can be a very tricky issue to handle, and it depends on what the local laws are.  In Canada, employees cannot be forced to undergo testing or treatment, but in some other countries MRSA-positive healthcare workers may not be allowed to even work until their carrier status is cleared.

Interestingly enough, just a year or two before this outbreak occurred a study (as yet unpublished) had been carried out in the same region, during which they found MRSA in 7.2% (6/83) of hospitalized horses and none in horses from local farms.  There is no mention regarding whether or not the hospital had taken measures to eradicate MRSA from the facility before the clinical infections that triggered the outbreak investigation occurred.

This was a typical MRSA "iceberg" - a couple of clinical cases were triggers for an investigation that found a lot more horses and people were actually carriers.  This is exactly why it's important to remain diligent about infection control measures like hand hygiene at all times, so that pathogens like MRSA don't move in "under the radar."  The authors of the paper summed it up nicely (although I'd leave out the part about decolonization):

"Strict implementation of hand hygiene, isolation of colonized and infected horses, decolonization
of colonized personnel and above all, constant education of veterinary students and personnel about the importance of infection control measures are required in order to decrease the risk for colonization and infection of both horses and personnel by MRSA and other pathogens."

More information about MRSA in horses is available on the Worms & Germs Resource - Horses page.

Rabies update

ProMed Mail's monthly US rabies update often contains some interesting cases, and the last one is no exception.

A llama in Georgia became aggressive, started biting itself and was spitting at one of its caretakers. A spitting llama certainly doesn't mean rabies (I have dodged enough llama spitballs to know that) but any sudden change in behaviour, especially with aggression, should raise some major red flags. Here, the llama was diagnosed as rabid and the person that was spat on is receiving post-exposure treatment.

bobcat attacked a man and boy in Massachusetts, and not surprisingly, was diagnosed with rabies. In this case, the bobcat pounced on the man, bit his face, clawed his back and held him in something akin to a bear hug, before moving on to the man's nephew. Wild animals don't typically attack except under extenuating circumstances (e.g. being cornered, protecting offspring), so this type of event should be considered a rabies exposure until proven otherwise. The man shot the bobcat and it was confirmed as rabid.

In an all-too-common scenario, a family that took in a stray kitten ended up needing post-exposure treatment because the kitten was rabid. They found the sick kitten and tried to nurse it back to health, but it died the next day. Fortunately, animal control arranged for rabies testing, something that could have easily been overlooked if no one thought about rabies and just assumed the kitten was sick for some other reason. Two dogs in the household were also considered exposed, but fortunately had been properly vaccinated, so typical recommendations would be for a 45-day observation period versus 6 months strict quarantine or immediate euthanasia had they not been vaccinated.

In a similar scenario, two women are undergoing post-exposure treatment after being bitten by a stray kitten they were trying to catch. After they caught the kitten, they took it to a local Humane Society, where it was euthanized because of the bite. This ended up being an efficient approach, but more often there would be a 10 day observation period of an animal that had bitten someone, to see if it developed signs of rabies.  If signs occurred the animal would be euthanized and tested for rabies, but if not then (theoretically) the animal would not have been shedding rabies virus at the time the bite occurred. Immediate euthanasia after a bite is not the typical recommendation, so I wonder whether the kitten was already showing some signs of disease. Otherwise, it wasn't a textbook approach to bite management but it ultimately resulted in the right outcome. 

These cases have a few recurring themes:

  • Changes in animal behaviour should lead to consideration of rabies.
  • Be wary of stray animals. It's best to stay away from them. If you end up taking in a stray, if it gets sick and dies, ensure that it is tested for rabies.
  • Vaccinate your pets because you never know when you'll encounter rabies.

Do you know what's in your dog's 'bully stick'?

I mean that two ways.

1) Do you know what a bully stick actually is?

2) Do you know what's in it?

A recent study headed up by Dr. Lisa Freeman, published in this month's Canadian Veterinary Journal (Freeman et al., CVJ 2013;54:50-54), looked into this by asking people what they thought bully sticks were made of, and testing the treats for calorie count and bacterial contamination.

The answer to question 1 is: bully sticks are raw, dried bull penis (which explains the need for a cuter name).

  • Only 44% of people surveyed knew that.

Also, bull penis is considered a by-product, yet 71% of people that fed bully sticks to their dogs said they avoid by-products in food.

  • This just shows a lack of understanding about what by-products are and their nutritional value. Many people classified things that are prohibited from by-products as being by-products, such as hooves, horns, road kill and euthanized pets. By-products aren't always bad and can, in fact, have good nutritional value. Also, they can be environmentally friendly and ethical since they are often made from nutritionally valuable parts of the animal that might otherwise be thrown out, thereby providing food for pets without taking anything out of the human food supply chain.

"What's in it?" was approached from 2 standpoints:

Firstly, caloric content was assessed.

  • Treats often get ignored when thinking about a pet's caloric intake, but calorie-dense treats can certainly contribute to obesity. Fifty percent of people surveyed underestimated the calorie counts of bully sticks. The average caloric density was 3 calories/gram, and given the variation in size of bully sticks, total calorie counts for a single stick ranged from 45-133 calories (9-22 calories/inch). So, yes, size matters.

Secondly (my bit part in this study), we looked at contamination by a select group of bacteria.

  • Salmonella wasn't found, which was encouraging since high Salmonella contamination rates have previously been found in some treats (mainly pig ears), and contact with pet treats has been implicated in some outbreaks of salmonellosis in people. We found Clostridium difficile in 1 treat (4% overall). That doesn't worry me too much since it's increasingly clear that we encounter this bacterium regularly. With common sense and handwashing, it's probably of little risk, but in some people (e.g. elderly, people on antibiotics, people with compromised immune systems) it might be more of a concern. We also found methicillin-resistant Staphylococcus aureus (MRSA) in one sample. This was a "livestock-associated" MRSA strain that can cause infections in people, but the risk is unclear. Theoretically, it's a potential source of exposure. If someone got MRSA on their hands from the treat then touched their nose (where MRSA likes to live) or a skin lesion (where it can cause an infection), then it could potentially cause a problem. Overall, the risk is probably quite low, but it's another reason to wash your hands after handling treats.

None of this means dog owners need to avoid bully sticks. It does mean that you should pay attention to what you feed your pet, think about treats when considering your pet's caloric intake (especially if your dog is overweight), keep treats away from high risk people (e.g. don't use a bully stick as a teething toy) and wash your hands after handling dog treats (of any kind).

Photo: A variety of bully sticks (also known as pizzle treats) often fed to dogs as chew treats (photo credit: Gergely Vaas 2006 (click for source))

Sssnakes and Sssalmonella

The fact that Salmonella and reptiles go together is old news. I often get questions about testing reptiles to see if they are Salmonella carriers and I tell people not to bother since even with a negative result, I'd consider the animal to be positive. A recent study in the Journal of Zoo and Wildlife Medicine (Goupil et al 2012) provides more evidence for this.

This study involved testing 12 snakes used in a public educational program, by sampling them weekly for 10 weeks. Here are the highlights:

  • 11/12 snakes were positive at least once.
  • 58% of snakes were positive on 5 or more weeks.
  • On a weekly basis, between 25-66% of snakes were positive.
  • Fifteen (!) different types of Salmonella were identified. Nine snakes shed 2 or more different Salmonella types over the study period.
  • Two samples from feeder rodents were also positive.

This shows nicely how a single negative sample doesn't guarantee that a snake is truly negative. It also shows how common Salmonella is in snakes. The positive cultures from the feeder mice aren't surprising either, but shows that even if a snake was truly Salmonella negative, it could be exposed at any time through its food, and that there is potential public health risk from contact with feeder mice (something that large international outbreaks of human infection from infected feeder mice have shown).

This study just reinforces some key concepts:

  • Assume all snakes are Salmonella carriers.
  • Use good hygiene practices around snakes and feeder rodents.
  • Keep snakes away from high risk individuals (e.g. the very young, elderly, pregnant, immunocompromised).
  • Don't waste your money testing your snake for Salmonella. Focus your efforts on smart and practical management practices.

More information about reptiles and Salmonella can be found on the Worms & Germs Resources - Pets page.

Petting zoo pathogens

The 15 cm of snow that fell last night is as good of an indicator as any that agricultural fair season is over in this region. But, planning ahead is important (and often not done well with fair petting zoos), so it's never to early to make a plan for next season. Petting zoos can be fun and educational, but are also associated with infectious disease risk. There's always some inherent risk with any kind of animal contact, since all animals (and people) carry a multitude of infectious agents. However, understanding pathogen shedding patterns is useful to help determine the best control measures.

A recent study in Comparative Immunology, Microbiology and Infectious Diseases (Roug et al 2012) looked at shedding of selected pathogens by cattle, sheep, goats, pigs, poultry, rabbits and horses at a California county fair. Here are some of the highlights:

  • E. coli O157 was found in one animal. This is the main outbreak concern when it comes to petting zoos, because very low numbers of bacteria are required to cause disease and human infections can be very severe. Surprisingly, the positive animal was a pig, not a ruminant, as would be typical.
  • Salmonella was isolated from feces of 3 animals: 2 pigs and 1 chicken.
  • Campylobacter jejuni, another potential cause of diarrhea in people, was found in 3 animals: 2 cattle and 1 sheep. The 2 positive cattle were adult dairy cattle and they represented 17% of all tested cattle. That's a surprisingly high rate for adult dairy cattle, in my experience.
  • Other Campylobacter species were found in 2 cattle, 3 goats (30% of all goats tested) and 1 chicken.
  • Antibiotic-resistant E. coli were common, particularly in pigs.
  • The parasites Cryptosporidium and Giardia, and the bacterium Vibrio, were not found.

The study didn't look at other aspects of the petting zoo, such as the types of contacts that were allowed, but based on the pictures that were included with the paper, they weren't optimal. Given the results, the picture of two children in the pen with the pigs (including one child who was sitting on the ground leaning against a pig) should raise some concern.

Does this study change anything? Not really, but more information can't hurt. We know that petting zoo animals can carry pathogens, and we have to assume that every animal in a petting zoo is carrying something that could cause an infection given the "right" circumstances. That's why there's a focus on good general hygiene and infection control practices (especially hand hygiene), along with excluding animals that are at particularly high risk. As the authors say "The study findings should not be interpreted as a deterrent to visit agricultural fairs, but as a reminder that good hygiene and sanitation are critical in these settings."

MRSA in an alpaca

Following up on my recent post about MRSP in rats, here’s a story about MRSA in an alpaca (Stull et al, Can Vet J 2012). As far as we know, it’s the first report of MRSA in an alpaca (or any camelid).

The report relates to our large animal hospital, where we perform MRSA screening of all horses at admission, weekly during hospitalization and at the time of discharge. It's all part of our infection control program, and the screening is designed to help reduce the risk to horses and our hospital personnel, since this multidrug-resistant bacterium is endemic in the Ontario (and broader) horse population, and outbreaks can occur in equine hospitals.

While alpaca’s aren’t horses, and we don’t see that many of them here, they sometimes get screened anyway since screening is being done on most of the other patients.

This case involved a neonatal alpaca that was admitted with its mother because of severe respiratory disease. The cria (baby alpaca) was very sick and was ultimately euthanized about 36 hours after admission.

Surprisingly, the admission MRSA sample from the cria was positive. In this case, MRSA wasn’t involved in the animal's illness. The cria didn’t have any evidence of bacterial infection, so this was an incidental (but interesting) finding.

When the bacterium was tested further, it was classified as CMRSA-5 (Canadian epidemic MRSA-5), a human strain that also predominates in horses in North America. The mother alpaca was MRSA negative. Presumably, the cria picked up MRSA from the farm environment or a person shortly after birth. MRSA (especially CMRSA-5) carriage rates are high amongst horse owners and horse vets compared to the general public, and it would have been nice to have determined if there were any horses on the alpaca’s home farm, but we couldn’t get any follow-up information.

This single case is probably of limited concern in the grand scheme of things. It’s likely an "oddball" infection rather than an indication that MRSA is a serious threat to alpacas, or that alpacas are a relevant source of human MRSA infection. However, that’s largely what was said when MRSA was first found in horses in the late 1990's and early 2000's, and it has since become a significant issue in that species, so the potential for MRSA to become a problem in alpacas can’t be completely dismissed.

If nothing else, the occurrence of this case is an indication of the need think broadly when it comes to infectious diseases, since many pathogens don’t have species boundaries. CMRSA-5 is a human-origin MRSA strain, but it’s worked its way outside of its natural host. It’s not the first and certainly won't be the last bug to make its way from people to animals.


Songbird Salmonella in Sonoma

This story's a couple of weeks old, but Sonoma County (California) residents have been warned about an outbreak of salmonellosis in songbirds. Outbreaks of salmonellosis occur occasionally in songbirds such as finches, and can result is lots of sick and dead birds. There are also risks to other species, including cats and people.

Why cats? Cats can be exposed to Salmonella from eating infected songbirds, and sick birds are typically a lot easier to catch than healthy ones.

Why people? People can be exposed to Salmonella from areas the birds have contaminated, particularly bird feeders and their vicinity. People have been advised to remove bird feeders or clean them regularly, and to promptly remove dead birds from under feeders.

  • Removing bird feeders temporarily might help keep birds (including sick birds) farther away from people. It's not going to hurt the birds since other food supplies are typically abundant.
  • Washing feeders can reduce the Salmonella burden but it could also increase the risk to people if they contaminate themselves while washing them. Certainly, people should not wash bird feeders inside the house, especially not in the kitchen sink. They should also take care to avoid contaminating their clothing and make sure they wash their hands thoroughly after finishing with the feeder.

"Songbird fever" is a colloquial name for salmonellosis in cats - a testament to the potential for feline infection. It's uncommon but can be severe, and cats can act as a bridge between sick birds and people by bringing Salmonella into the household. This is just one of many reasons why domestic cats are better off living indoors.

MRSP in urban rats

A year or two ago, I received an email from Dr. Chelsea Himsworth, who was doing some interesting work looking at different bacteria found in rats in Vancouver's Downtown Eastside. This is an impoverished urban neighbourhood with lots of homeless people, IV drug users and HIV-infected individuals... and lots of rats. Dr. Himsworth, a veterinary pathologist working on a PhD at the University of British Columbia, is assessing potential health risks posed by rats to this type of population. The reason she got ahold of me was to see if I was interested in looking for some different bacteria, like methicillin-resistant staphylococci, in these rodents.

If you look, you often find, and that was the case here with methicillin-resistant Staphylococcus pseudintermedius (MRSP). This multidrug resistant bacterium was found in nasal or oral swabs from 2.1% of rats (Himsworth et al, Emerging Infectious Diseases 2013). So it was relatively uncommon but certainly present.

One question: from where did it come? Most MRSP isolates found were the same as the most common strain found in dogs, so presumably the rats picked it up directly or indirectly from pets or stray dogs. However, there was also a type we've never run across before. That could mean that there is a separate rat-associated MRSP strain, but more likely it means this strain is present in dogs in Vancouver and we just haven't found in dogs elsewhere yet (there aren't many of us typing MRSP, and we find new strains not uncommonly). While dogs and rats presumably don't spend time lounging around together, there is certainly potential for direct or indirect contact between dogs and rats, and rats have been found to harbour dog-associated oral bacteria in the past.

Another question: what's the risk to people? The risk of infection is probably limited, but not zero. MRSP can cause infections in people but doesn't do so very often. MRSP is unfortunately becoming fairly common in dogs, so people are commonly exposed, yet human infections are still rarely diagnosed. So, the risk to humans from these rats carrying MRSP is pretty low overall, although we'd rather not see new reservoirs for this bug.

What about the rats? Rats may be the innocent bystander here, having been infected by dogs. We don't know whether MRSP causes infections in rats. It probably can in certain circumstances.

Can rats spread this to dogs? I guess it's possible. Rats are probably not contaminating the environment too heavily with this bug from their noses or mouths (compared to dogs), but direct transmission if a dog caught a carrier rat could certainly be possible. The risk to the dog population is pretty low since this pathogen is well established in dogs already and there's a lot more dog-dog than rat-dog contact.

Why does an antibiotic-resistant bacterium live in these rats when they're not receiving antibiotics? Good question. Antibiotics certainly help when it comes to selecting for resistant bacteria, but they're not absolutely required. There are a lot of other factors that can also play a role, so rats don't need direct or indirect exposure to antibiotics to acquire MRSP (or other multidrug-resistant bacteria). It could be that they are just commonly exposed and the bacterium only hangs around for a short period of time, or that there are some other factors in the rats, their food or their environment that select for these resistant bacteria.

C diff sniffing dog

About 500 people have sent me this article over the past week, so I guess I should get around to making some comments. The article entitled "Using a dog’s superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study" (Bomers et al 2012) is in the Christmas edition of BMJ, an edition in which they typically publish something fun or light. The study describes the use of a dog trained to sniff out C. difficile, an important cause of diarrhea people, especially hospital patients. The premise is that dogs could be used as a rapid and cheap way to diagnose C. difficile infection, and therefore allow for earlier treatment and implementation of enhanced infection control measures.

There were 3 components of the study:

1) Detection of C. difficile on a culture plate

The dog was trained using culture plates containing C. difficile. That's how they have to start, but detecting C. diff on a culture plates is pretty easy. I can do that, and my nose is nowhere near as good as a dog's. Clostridium difficile has a very characteristic odour on a culture plate and odour is one of the methods that's commonly used to determine whether C. difficile might be present on the plate. 

2) Detection of C. difficile in stool

For this, the researchers set the bar pretty low. A positive fecal sample was considered one that was culture-positive positive on a test to detect the C. diff toxins. We know toxin tests are pretty insensitive (they give a lot of false-negatives), which is why there's a major movement to replace them with molecular tests. By requiring the sample be positive on both culture and toxin test, it means that the samples had to have been quite positive to be considered (i.e. they didn't test the dog with "weaker" positive samples that may have had less C. diff and C. diff toxin in them). That weakens the results a bit, but they're still interesting.

They presented the dog with 50 positive and 50 negative samples. The dog gave a positive response to all 50 positive and a negative response to 47/50 negative samples.

3) Detection of C. difficile in patients

Here's where it gets more interesting and potentially more relevant, since the real value in a sniffer dog would be to detect C. diff directly from patients, as a rapid and cheap screening tool.

For this part, they enrolled 30 patients with C. difficile infection and 270 controls. One problem I have is that 94% of their controls were non-diarrheic. It raises questions about whether the dog is detecting C. difficile or just diarrhea, since the groups don't just differ by their C. diff status, as would be most appropriate for a control group. The more differences there are between the groups, the greater the potential that a difference other than the one of interest (i.e. C. diff status) is actually the thing that's being detected. There' a big difference between a dog that can detect C. difficile and a dog that just detects diarrhea.

Another issue is that some C. difficile strains don't produce toxins and are not able to cause disease, but they'd presumably be detected the in the same way based on odour, in contrast to tests that are based on detection of the bacterial toxin or genes that encode toxin production.

Anyway, the dog correctly identified 25/30 (83%) cases and 265 (98%) controls. Not as good as current molecular tests but pretty remarkable, nonetheless.

Overall, it's an interesting story and shows how good a dog's nose can be, how smart (some) dogs are, and how thinking outside the box can result in some interesting ideas. Though I don't think diagnostic testing companies have much to worry about at this time in terms of competition from sniffer dogs.

Cool concept. Fun paper. Not coming to a hospital near you in the near future, but not something to completely dismiss.

(click image for source)

Hygiene hypothesis, fecal exposure and other strange musings

Doug Powell, renowned for his food safety efforts and Barfblog, often uses the phrase "don’t eat poop" when it comes to food safety. I’ve stolen that line and I now use it a lot too when talking about zoonotic disease. However, over time, I’ve started to wonder whether the line always applies.

I was giving a talk last week and the question of "how clean is too clean?" came up. It’s not the first time, and I have a tough time answering it these days.  The response relates to a few things, such as the hugely important role of our commensal bacterial population and the "hygiene hypothesis."

While some people might be turned off by the concept, we are outnumbered by bacteria in our own bodies. We have approximately 10 bacterial cells in or on us for every one of our own cells. When you compare the number of bacterial genes to our genes, the difference gets even bigger. While bacteria can cause disease, they are also critical to our health - we actually can’t live without them. They help our immune system develop and function. They help with digestion. The help us fight off other more harmful microorganisms. They produce vitamins and other compounds. They interact with us in ways that we don’t full understand, and probably in ways we’ve never even thought about. We know clearly the intestinal bacterial population plays a role in things like allergic diseases, and there’s increasing evidence of interaction between our intestinal bacteria and our brain.

A key part of our development is learning to how to live with and tolerate our bacterial microbiota. If our bodies recognized all bacteria as bad foreign invaders, we’d kill ourselves trying to kill them. Instead, we develop tolerance to certain bacterial populations. Developing tolerance is a critical aspect of healthy life, and things that interfere with development of tolerance might set the scene for future diseases, particularly allergic and inflammatory diseases. That’s where the hygiene hypothesis comes in: are we now too clean?

So, the concept that all bugs are bad is clearly wrong. Which bugs are good and how to live with the abundant microbial world in and around us is the tougher question to answer. Previous approaches to infectious diseases, based on "find bacterium… must kill…", are too simplistic and potential harmful in some situations. There’s new research indicating that the best treatment for recurrent Clostridium difficile infection may be administration of feces from a healthy donor by enema. So, clearly exposure to feces is not always bad.

Back to the original question (I was killing time on a plane as I wrote this so I had a chance to ramble on….): How clean to we want things to be, and can we be too clean? Furthermore, does reduction in our exposure to microorganisms predispose us to various diseases, such as allergic and inflammatory diseases? The answer to both of theseis presumably yes. However, what level of clean is good and what level is excessive?

In a hospital, we want clean... very clean. We have a highly susceptible population and lots of bad bugs in circulation. We want close attention paid to disinfection and thorough hand hygiene in hospitals, no doubt about it. But what about in the general population? Antibacterial soaps are not generally recommended for households because there’s no evidence they are needed and they might increase the likelihood of antibiotic resistance (since bacteria that become resistant to antibacterial agents in soaps can also be resistant to some antibiotics). We don’t need high level disinfection as a routine practice all over the house. At certain times and in certain areas, sure, it's certainly still a good idea. For example, if you’re working with raw chicken, careful attention to hygiene and surface disinfection is important because of the high likelihood of exposure to some important pathogens (e.g. Salmonella). But do we need to be spraying disinfectants around the rest of the house on a routine basis (as some TV commercials indicate)? Probably not.

Being a germaphobe can be good, but maybe it can also be bad. We need to think about the role of this complex and massive (yet still poorly defined) microbial population that lives with us. How much exposure to bacteria from different sources is actually needed for health, especially in kids? How much is harmful? There has to be a middle ground, and hopefully we’ll find it.

I’m not trying to say never wash your hands, just like I’d never say wash your hands after you touch anything, anytime. In certain locations (e.g. hospitals, food preparation areas) we need to pay extra attention to hygiene and disinfection. But what about the rest of the time? How do we find that balance? No one knows, but it’s an important question to consider.

Connecticut officials tracking possible rabies exposure

Public health personnel in Chapin, Connecticut (USA) are trying to find a woman bitten by a rabid cat. The woman was driving down South Brear Hill Road when she came across a cat. She picked the cat up from the road and told someone else who was there that the cat bit her. She then drove away, and the cat was subsequently identified as being rabid. Now a search is underway to find the woman so  she can be given post-exposure treatment.

This is clearly a high risk situation. As opposed to other public health alerts that try to find people who were in contact with a rabid animal on the off chance that they were bitten or otherwise exposed to the virus, this person was bitten and that creates a very high risk of rabies transmission.

The outcome is simple.

  • If she gets rabies, she will almost certainly die.
  • If she was exposed but gets post-exposure treatment soon (and completes the recommended course), she will almost certainly live.

It's easy to see how this could happen. The woman probably found the cat looking injured or lost on the road, and wanted to help. However, that action, and failure to recognize the risk associated with the bite, have put her life at risk.

A few general rabies reminders:

  • Avoid contact with wildlife or any animals you don't know, especially if they seem sick or otherwise abnormal.
  • If you are bitten, make sure the potential for rabies exposure is considered. The animal needs to be observed to see if it is rabid, or it needs to be tested. If the animal can't be monitored or tested, you can't rule out rabies and getting post-exposure treatment is the safest course of action.

More information about rabies can be found on the Worms & Germs Resources - Pets page.

Tags: , ,

Turtles, Santa and pre-Christmas returns

I received an email from a relative the other day with a pet question. I get lots of these, but the surprising part is this relative doesn't have any pets (and I think is generally of the opinion that pets are okay, as long as they're not hers). She was asking about turtles. As a responsible prospective pet owner should, she was looking into the issues pertaining to the pet before getting the pet. I think she was more focused on general aspects of care and management, but zoonotic disease risks play into the equation too. This one was a no-brainer, since they have a young child in the house and reptiles shouldn't be present in households with children less than five years of age. So, problem averted, and the need to make a decision later about removing an inappropriate pet from a household was also avoided (along with the awkward "oh, you got a turtle?" Christmas dinner conversation).

But, what happens when people aren't so proactive? Turtles are often passed from house to house as people get bored with them, as they outgrow small aquariums or as parents of young or otherwise high-risk children tune into the Salmonella risks or owning such a pet. If you don't have a friend willing to take your turtle, what do you do?

Petco, a pet products company in the US, has launched a "turtle relinquishment program," whereby they take in "wayward" or unwanted turtles. As of a few weeks ago, 111 people from 10 US states had surrendered their turtles to Petco. The turtles are sent to a turtle farm in Louisiana.

So, this is an option for individuals (at least in the US) with no local way to rehome their turtle. The fact that the turtles are going somewhere to make more turtles (and more Salmonella) is a bit of a concern, but I can see the greater good. Staff at the farm say that turtles are treated for any signs of Salmonella when they arrive. This is a bit strange, since turtles don't typically develop disease from this bacterium - they simply shed it with no signs. Hopefully that doesn't mean the farm is just treating all the animals. It's basically impossible to eradicate Salmonella from turtles, so if they are routinely treating, they're probably breeding drug-resistant Salmonella along with baby turtles.

I know the typical round of emails is going to follow, from reptile advocates who have pretty much done everything except burn me in effigy (or in real life, fortunately). As I've said before, reptiles can make great pets, just not in all households. I've owned various reptiles myself, but reptiles and small kids don't go together. Too many kids get sick every year from pets like turtles. A small number die. That's just unacceptable.

More information about turtles and Salmonella can be found on the Worms & Germs Resources - Pets page.

To lepto or not to lepto...

Life with Merlin has been busy but going pretty well. There's been no pee on the floor in the past 48 hours so we're making progress. Speaking of pee (which, sadly, I seem to do a lot), we need to decide about leptospirosis vaccination for Merlin.

A good preventive medicine program is important for every pet. There's no "one size fits all" version - the program needs to be tailored for every region and pet/owner combination. We have Merlin's deworming covered. I gave him a booster vaccine the other day, which covers distemper, parvo and a couple of respiratory viruses (adenovirus type 2 and parainfluenza). Rabies vaccination will be coming soon, when he's a bit older (at least 3 months). Now that we have the "core" components covered, we need to think about the elective aspects. One of those is vaccination against leptospirosis.

When thinking about vaccination, it's a cost-benefit decision. The costs and benefits can be hard to accurately assess, but a few basic questions are key: Is there a risk of exposure? Is the disease of concern? Is there a safe and effective vaccine?

Is there a risk of exposure?

Leptospirosis, a potentially life-threatening infection caused by different types of Leptospira bacteria, has been called a "re-emerging" disease in many parts of North America since rates of infection have increased over the last 20 or so years.

Leptospirosis certainly occurs in dogs around here. We don't see a lot of cases but it's far from rare and it can be nasty.

Wildlife are the main reservoir. Infected wildlife shed the bacterium in their urine, and urine-contaminated water and wet areas are the main sources of infection. Raccoons are the biggest concern around here, and there is certainly no shortage of raccoons around my house (including in the garage sometimes). Since Merlin is a Labrador, he's bound to spend a lot of time swimming in ponds and wallowing around in wet areas on our property... prime sites to be contaminated by pee from infected wildlife. So, there's a reasonable chance that he'll be exposed.

Is the disease of concern?

There's no doubt here. While it's uncommon, it can be nasty. Life-threatening infections can occur and kidney failure is a major problem. Treatment of lepto can be difficult and expensive.

Is there a safe and effective vaccine?

Lepto vaccines have had a bad rap. Older vaccines weren't very effective (often not protecting against the strains that are of concern) and were associated with a high rate of adverse reactions. Those former concerns have persisted in some people despite the fact that there's a new generation of vaccines that are much more effective and safer. The new vaccines are better designed, better tested and cover a broader range of strains. There's quality research indicating that they work. Like any vaccine, they're not 100% effective but they are quite good overall.

Information about adverse reactions is harder to get. Adverse event reporting is sporadic at best, but the available information doesn't indicate that these vaccines cause a greater incidence of adverse reactions than any other vaccine. Any given vaccine can cause a problem in any given dog, but the overall risk is low.

So, don't tell Merlin but another set of vaccines is in his future.

What does a puppy have to do with herd health?

The new puppy, now named Merlin, is keeping things busy around here. (Note to self: avoid getting a new puppy during miserable weather.  Standing in pouring, driving rain at 4 AM is not fun. Okay, enough whining.)

Yesterday, I wrote about the new puppy's deworming plan. One thing I forgot to mention was the rest of the "herd." By that, I mean Meg, our 11-year-old Lab. Herd health gets a lot of attention in food animals and to a lesser degree in horses, but many concepts remain important for pets. Specifically, when you introduce a new member into the herd, you might change disease risks or required preventive measures for other members of the herd.

Meg lives a pretty cat-like existence. She sleeps, eats, walks far enough to go outside to pee and, well, that's about it. As an older dog who has very rare contact with other dogs, her risk of exposure to many microorganisms, such as parasites, is limited. However, since we brought a new little furry vector into the house, Meg might be exposed to some things that haven't been much of a concern in the past. Her habit of eating whatever she can find (including poop), increases that risk further. So, what's the herd health plan?

It's not too detailed, actually.

  • One thing is making sure that we deworm Meg and we don't just focus on the puppy. She might be exposed to anything the puppy is/was shedding. We're usually pretty lax on deworming her in the winter months, but she'll get a couple of doses of dewormer alongside the puppy. 
  • Poop removal. Since Meg's a notorious poop-eater, we'll want to remove Merlin's waste promptly. That's pretty straightforward. If she can't find it, she can't eat it. It's also important to make sure that old feces aren't left around, because some parasites require time in the environment to become infectious, so regular feces removal prevents accumulation of infective forms of some. The current temperature is at the lower limit of where Toxocara eggs are able to develop into infectious larvae, and the risk will probably be pretty minimal as the temperature drops over the next few days, but it's not hard to make sure the yard gets cleaned up.
  • If we find something in the puppy, then we'll have to consider whether Meg might be exposed or at risk too, and decide whether she needs to be tested or treated.

The other aspect of the herd is the non-canine component of the household (i.e. the kids). The key points for that, in terms of zoonotic parasites, are cleaning up feces from the yard, avoiding fecal contact, hand washing, treating the dogs appropriately to reduce parasite shedding and other basic feces-avoidance measures.

New arrival...

Hide the kids’ toys, tune up the carpet cleaner, get ready for some sleep deprivation… there’s a new dog in the house. Last night, the yet-to-be-named ("he who shall not be named" having been rejected by Heather) little yellow critter arrived. Meg (the existing dog) seems relatively content, or at least resigned. The cat... not so much, but he's already established who's the boss.

So, while I'm momentarily not trying to convince the puppy to pee outside, I’ll take this opportunity to hopefully practice what I preach and describe what we’re doing for things like vaccination, deworming and other infectious disease-related topics.

To start things off: What’s the deworming plan?

  • Roundworms (Toxocara canis) are the main concern in puppies. It’s generally a good idea to assume that a young puppy has roundworms, regardless of from where it came and how well cared for it was.
  • Canadian parasite treatment guidelines are to treat puppies with a drug that will kill Toxocara worms at 2, 4, 6 and 8 weeks of age, then monthly until 6 months of age. Our little guy is 9 weeks old and has already been treated a couple of times for roundworms, plus he's had one treatment for coccidia (a different parasite that was found on a recent fecal exam).  He’ll get another dose of pyrantel pamoate in the next day or two, then monthly until he’s 6 months old. (If someone gets a puppy and it hasn’t been treated like this or its vaccination history isn’t known, it is recommended to give 3 treatments 2 weeks apart, then monthly until 6 months).
  • A fecal exam will be done on the puppy in the near future. It’s not an emergency since it won’t impact what I do at the moment in terms of treatment, but it’s good to see if there are any parasites that aren’t killed by the chosen dewormer (e.g. tapeworms) and to detect resistant parasites (i.e. Toxocara eggs still found in feces after appropriate treatment).
  • No flea treatment now since he doesn’t have any evidence of a flea infestation and it’s not very likely he’ll be exposed to fleas before the spring based on the current climate where we are.
  • No heartworm treatment until the spring either. The Canadian Parasitology Expert Panel (CPEP) recommentaion is for dogs to receive monthly heartworm preventive treatments beginning at a maximum of two months of age. So, I’m not really following that one, but given the time of year, the low prevalence of heartworm in the area he's from and the fact that the puppy wouldn’t have had too much risk of mosquito exposure because of its age and indoor housing, the risk of heartworm exposure this season is very low.

More updates to come, and hopefully not too many descriptions of how to clean puppy feces off of various surfaces.


Identifying the "right" parasite control program

Here is another guest blog, this time from the "worm-guy" Dr. Martin Nielsen of the Gluck Equine Research Center at the University of Kentucky.

At the recent 9th International Conference on Equine Infectious Diseases (EIDC) in Lexington, Kentucky several sessions were focused on parasite control of horses. Drug resistant parasites are a world-wide problem in equine establishments, and it has become a challenge to define a simple and useful set of guidelines to be used by horse owners. As many readers of the Worms & Germs Blog will be aware, there is no longer a “one size fits all” program, and parasitologists instead often talk about the complexity related to the different parasites that often infect the horses in concert, their interactions with their hosts, and how to interpret fecal egg counts. While this is all useful and important information, it can be frustrating when it does not readily come with some practical guidance.

Equine parasitology is rarely well-represented at parasitology conferences. Usually, there are less than a handful equine abstracts, and often not even enough for a separate session. The three or so participating equine parasitologists often have to create their own little scientific session over a cup of coffee during the breaks. The EIDC was much different. It had participation from leading equine parasitologists from Sweden, Denmark, Finland, Germany, United Kingdom, Canada, Brazil, and the USA. More than 30 parasitology abstracts were presented at the meeting, and a special session critically addressed the most pressing research needs for equine parasite control. During the conference, an international equine parasitology consortium was formed, and it will serve to coordinate future research efforts and to communicate consensus-based guidelines for parasite control.

So, what are these recommendations then?  New research presented at the EIDC illustrated very well that general recommendations are more straight-forward than often anticipated. Work performed by Kurt Pfister and colleagues in Germany illustrated that fecal egg counts are useful for monitoring and controlling parasite transmission by the means of selective therapy. Two Danish studies illustrated that one or two yearly strategic treatments applied to all horses are advisable to effectively break the life cycle of large strongyles, particularly the bloodworm, Strongylus vulgaris. In other words, a basic foundation of treatments can be defined, upon which the some of the more parasitized horses can be identified to receive additional treatments with a selective approach. Several presentations underlined the need for yearly routine evaluations of the efficacy of the anthelmintic drugs used on each farm. The fecal egg count reduction test is the most important use of the fecal egg counts. [Weese comment: that's when you do a fecal egg count before and after deworming, and compare the egg counts to see how much they dropped, as an indication of how well the dewormer worked] Perhaps most encouraging was the promising new diagnostic tools presented by several groups for detection of migrating or encysted parasite larvae. These will turn very useful for identifying horses at risk of disease and in need of deworming. One of these, developed by Jacqui Matthews and her group at Moredun Research Institute in Scotland shows great promise for measuring burdens of small strongyle larvae (cyathostomins), which can pose a threat for severe parasitic disease. With these new tools in hand, we will become able to further refine our recommendations in the future.

Dear vet clinic design 'experts': Pet owners aren't stupid

In the latest edition of the American Animal Hospital Association's Trends magazine, there's an article about veterinary clinic design. The section dealing with exam rooms says:

Discussion is ongoing about whether sinks are needed in the exam room now that hand sanitizers are available.

  • I'm not sure who's discussing this. Hand sanitizers are great and should be used as much as possible, but that doesn't mean handwashing is obsolete. Some pathogens we deal with are resistant to alcohol, such as parvovirus, Clostridium spores and ringworm. We need to wash hands when these bugs might be present. Hand sanitizers also don't help if you have chunks of pus, blood or feces on your hands. If there's no sink in the exam room, handwashing usually won't be done when it's supposed to be. If someone has to leave the room and walk to a sink, it just doesn't happen often, even if it's a short distance. A person also runs the risk of contaminating other surfaces along the way, between the exam room door and the sink.

Experts agree, however, that if you have a sink, your clients will expect you to use it to wash your hands.

  • I'm not sure who these experts are, or what they're experts in. Certainly not common sense or infection control. What they're implying here is that pet owners will think veterinarians aren't doing a good job if they see a sink and the vet doesn't use it, but that if no sink is present, no one will think twice about a vet failing to practice good hand hygiene. If an owner is going to clue in to the presence of the sink and failure to wash hands (something we should be encouraging), their common sense and observation skills won't evaporate if there's no sink.

This is similar to an interview with an architect on where the guy says "if I have a sink I better wash my hands or the client thinks my hands aren't clean. In many cases it's better off not to have a sink..." (note: the banging you hear is me hitting my head against a wall). The same architect cited in this article, so hopefully he's actually the only one pushing this approach.

Pet owners aren't dumb.

Infection control isn't rocket science.

Handwashing is important and under-used.

We need sinks in exam rooms.

Common sense needs to be more common.

It's difficult to put sinks in existing exam rooms - some clinics just can't do this easily. That's tolerable if they are diligent in their infection control practices, use hand sanitizers as appropriate and make sure they get to a sink (without contaminating things along the way) when they need to wash their hands.  Not putting sinks in a newly designed clinic is just dumb.

Staph 'intermedius' infections from dogs

When I give talks about methicillin-resistant staphylococci, I almost invariable get into a discussion of the risks of methicillin-resistant S. pseudintermedius (MRSP) in people. This bug is becoming increasingly common in dogs and because it's so resistant to antibiotics, there's concern about whether it can be transmitted to people.

My usual answer is that there is a low risk of MRSP infection in people, but not no risk. MRSP is no more likely to cause an infection in a person compared to it's antibiotic-susceptible counterpart, regular S. pseudintermedius (the resistant version is just harder to treat). Most dogs carry susceptible S. pseudintermedius in their mouths, nose, skin, ears and/or intestinal tracts, so people in contact with dogs are very commonly exposed. Yet, human infections seem to be quite rare. There are periodic reports in the medical literature about S. pseudintermedius infections in people, but they tend to be single case reports, and when someone can publish a report of a single infection in person, you know it's pretty uncommon (since if it was common, no journal would be interested).

That's my long-winded way of introducing a recent case report in the Journal of Clinical Microbiology (Hatch et al. 2012). The patient in the report was an elderly man with underlying disease, so someone who was at high risk of infection from bugs that don't often affect otherwise healthy people. He had skin lesions, sore joints and a bloodstream infection, and "S. intermedius" (I'll get to the name issue later) was isolated from his blood. Fortunately, he was successfully treated. He owned a dog and that was (reasonably) considered to be the source of the bacterium, but no testing was done to look into that. So, from a disease standpoint, it's not really a surprising case - just another in a series of very rare infections that have happened.

The other issue here is the fact that the authors (along with the diagnostic lab, the journal's reviewers and the editor) are behind the times and don't realize that it's virtually guaranteed that this person didn't have a S. intermedius infection. Rather, it was presumably S. pseudintermedius, or perhaps another similar staphylococcus. It wouldn't have much of an impact on this particular case, although not knowing the species probably also indicates the lab doesn't know that there are different breakpoints to determine if the bug is methicllin-resistant, and there's the potential they would miss methcillin-resistant S. pseudintermedius and use an inappropriate and ineffective treatment (fortunately that didn't happen here).

E coli outbreak and dog risks

I've had a few (well... more than a few) calls about potential risks to animals from the large Canadian E. coli O157 beef recall. The main concern is for dogs that are fed potentially contaminated raw meat that has been recalled, but there is also potential for exposure through cross-contamination if people in the household consumed any suspect products, and through dogs getting into garbage containing meat packaging. The other issue is whether dogs and cats can become exposed, start shedding the bacterium in their feces and subsequently infect people. Contamination of a pet's food bowl leading to human exposure is also a potential concern, especially considering the fact that as few as 10 of these E. coli bacteria can cause infection in people.

Overall, these risks are quite low. The contaminated meat is primarily a human concern. The role of E. coli O157 in disease in dogs is pretty unclear, but there's no evidence it's a significant problem. Experimentally, disease can be induced in dogs fed relatively high numbers of E. coli O157, but natural disease seems to be rare (including in dogs on beef farms where exposure is probably relatively common). I think it's reasonable to suspect that this strain of E. coli can cause disease in dogs, but it doesn't happen very often. We also don't recognize hemolytic/uremic syndrome (HUS) in dogs (the severe form of E. coli O157 infection that can cause kidney disease in people).

The risk to people from recalled meat is real. The risk to people from pets is pretty remote. Studies have not identified pet contact as a risk factor for human E. coli O157 infection. Dogs have been implicated as vectors in a limited number of specific household situations, albeit with rather weak evidence and only when focused on people and animals on beef farms.

Overall, the risks to pets and from pets are pretty limited. The main concern with the recalled meat is human disease. That being said, I wouldn't recommend people feed recalled meat to animals instead of disposing of it, since there is a possible though slight risk to both humans and animals.

Flesh-eating disease in a dog

A Wyoming (USA) dog has died of necrotizing fasciitis (more popularly and dramatically known as "flesh-eating disease"). This isn't unheard of in dogs, but it's a pretty rare disease. The six-year-old Great Dane's infection apparently raised some concern because of the diagnosis of necrotizing fasciitis in three people in the area. However, there is no known connection between the dog and the human cases.

While not anything new, the case is noteworthy for a few reasons, not the least of which is the high mortality rate associated with this disease. A few different types of bacteria can cause "flesh-eating disease," but streptococci are most common. The news reports say the dog had Group A strep, which is quite surprising and raises a lot of questions, such as:

  • Was it really Group A strep? Most of these infections in dogs are caused by a related bug, Streptococcus canis, which is a Group G strep. Group A strep is essentially unheard of in dogs and I have to wonder whether the bacterium was misidentified by the lab or the reporting is inaccurate.
  • If it actually was Group A strep, what's the public health concern? Group A strep is a common bug in people (the one that causes strep throat) but invasive infections like necrotizing fasciitis are a much bigger concern, and potential dog-human transmission would have to be considered.
  • If this was Group A strep, are public health authorities taking the same steps was they would in response to finding Group A strep necrotizing fasciitis in a human in the household (such as the Public Health Agency of Canada's Guidelines for the Prevention and Control of Invasive Group A Streptococcal Disease?) This would make sense to me.
  • If this was really Group G strep (the most likely scenario), did the dog receive a fluoroquinolone antibiotic before the infection set in? It doesn't sound like that was the case from the article, but knowing for sure would be interesting. Most cases of Group G strep necrotizing fasciitis that we see are associated with enrofloxacin treatment of an initially mild infection, since this drug can induce increased virulence in Group G strep.

Regardless of whether it was Group A or Group G strep, it's an unfortunate situation for the dog and the family, but people shouldn't be too concerned because this is a very rare, sporadic disease in dogs and one that has not been linked to any risk to other species.

Boy Scouts not so prepared this time

Earlier this year, a troop of Boy Scouts in the US beat off a rabid beaver that was attacking their leader (I wonder if there's a badge for that). Boy Scouts and infectious diseases are in the news again, but not with as happy a story.

In the recent incident reported on ProMED, ten Boy Scouts that attended a camp on the banks of the Semois River in Belgium developed leptospirosis - a potentially severe bacterial infection caused by Leptospira bacteria. The bacteria are shed in the urine of a variety of animal species, and people can become infected through contact with contaminated water or animals. The boys reported having played with a rat, which was likely actually a muskrat, based on the description of its size.

Three of the boys were hospitalized.  Hopefully all are on the way to recovering.

This is yet another reminder that wildlife should be left alone. It's possible the boys were infected from the environment, but handling a muskrat (which was presumably sick if they were able to get that close to it) certainly increases the risk of exposure to a variety of infectious diseases.

Image of a North American muskrat (photo credit: Linda Tanner)(click image for source)

Petting zoo E coli: Wales

It's perhaps a good sign for public health when I don't tend to come home from a local fair and write a rant about the sorry state of the petting zoo. Around here, things seem to have improved at most events over the past few years, probably largely because of the efforts of local public health personnel. However, some establishments still fall through the cracks and regardless, even with optimal management, there's always some degree of risk with contact between animals and the public.

Welsh authorities are investigating a small (so far... and hopefully to remain that way) outbreak of E. coli O157 that has been tentatively linked to Cantref Adventure Farm. The two children became ill after visiting the farm. Two family members of one child have also tested positive for the bacterium, and it's believed that one of them was infected via contact with child (as opposed to direct contact with animals at the farm). Since both kids visited the farm in the days before they got sick, and since petting zoos are a prime source of E. coli outbreaks, it's logical to assume the farm was the source. Even though this has not yet proven, the reason to make this early assumption before a link can be definitively established is to get the word out to others that may have visited the petting zoo, in case there are more cases of illness. Authorities are telling people who visited the farm since the beginning of August to contact their physician. It's not clear whether they want to test everyone (by collecting a stool sample) or just have them checked out to make sure they are okay.

Meanwhile, the investigation at the farm is ongoing. Presumably, stool samples from animals on the premises and environmental samples have been collected to see if the same strain of E. coli is present. All direct contact between the public and animals on the farm has been stopped, and the site is being thoroughly cleaned. That's a pretty standard response overall, and hopefully if the petting zoo was the source, transmission has ceased.

Petting zoos can be fun and educational and we don't want to over-react and assume they are all inherently dangerous. There's always some degree of risk of infectious disease exposure, and the key is making sure petting zoos are run optimally to reduce, as much as possible, the risk to the public. The public also has to play a role, by following rules, supervising children and (probably most importantly) actually using hand sanitizers and handwashing stations that are provided.

New Dirofilaria species in dogs and people

.Dirofilaria immitis is the parasite that causes heartworm in dogs (and rarely cats). This mosquito-borne parasite can cause serious disease in dogs, and a lot of effort is spent trying to prevent heartworm infection. It can also cause disease in people who are bitten by a mosquito that has fed on an infected dog, but human infections are quite rare and of limited health risk. The main concern with regard to human infection is that it can create a small mass in the lungs. The mass itself isn’t usually a problem, but if it gets seen on an x-ray, it may appear very similar to a lung tumour, potentially leading to the use of more invasive diagnostic techniques (e.g. lung biopsy) to rule out cancer.

Dirofilaria immitis is not the only species of Dirofiliria. In fact, there are mulitple different Dirofilaria species with different hosts, some of which can also rarely infect people.

When it comes to dogs, D. immitis is the main concern, but dogs are also the host of Dirofilaria repens, which is most common in Mediterranean countries, eastern Europe and sub-Saharan Africa. Now, there’s a new one to add to the list, based on a paper in the Journal of Clinical Microbiology (To et al. 2012) that describes a novel Dirofilaria species in Hong Kong. Interestingly, it was found first by identifying disease in people.

Three human cases were identified in Hong Kong over a 10 month period in 2011-2012. When the researchers recovered the parasite from these individuals, they determined that, while it looked like other Dirofilaria, it was genetically different from any known species. They have tentatively named it «Candidatus Dirofilaria hongkongensis» (not very original but descriptive).

They then tested blood samples from 200 dogs and 100 cats, and found a parasite in six dogs that was identical to the new Dirofilaria from the human patients. They also tested the dogs with a commonly used commercial heartworm test that detects D. immitis and they were all negative, except for one dog that was actually infected with both the new species and D. immitis.

This is an interesting report and shows the need to be aware of potentially emerging issues. Some important questions need to be answered:

  • What’s the risk to people? Obviously it can cause disease, since the three people in this report were actually sick. However, is this a very rare condition or something that may be more common? Is it something that’s been around for a long time and not diagnosed or is it really new?
  • How do people get infected? They presumably get it from being bitten by an infected mosquito (as for other Dirofilaria) but how does the mosquito get infected? Are dogs the main source, one of many sources or are they inconsequetial?
  • Does this new Dirofilaria cause disease in dogs? The six positive dogs were healthy, at least at the time of testing. Heartworm caused by D. immitis is a gradually progressive disease, meaning the signs become worse over time, so the fact that these dogs were clinically normal doesn’t mean there’s no risk, as they could start showing signs later on.
  • What is the risk outside of Hong Kong? It’s hard to say because we know so little about this parasite, but it’s probably limited, at least at this point in time.

 (click image for source)

LCMV in rodent facility workers

I’ve written about lymphocytic choriomeningitis virus (LCMV) before, as an interesting but pretty uncommon rodent-associated disease. Human infections are mainly associated with handling  rodents, although other routes of transmission, such as organ transplantation from an infected donor, have also been reported. Being a disease associated with rodents and considering how rodents are produced in North America (i.e. mass production in large breeding colonies, followed by transportation to large distributors and massive mixing of animals), LCMV is bound to be a recurring problem associated with the pet rodent trade.

An issue of the CDC's ominously titled Morbidity and Mortality Weekly Report describes the risk of infection with LCMV to people who work in rodent breeding facilities. It all started with the diagnosis of meningitis in a person who worked in a rodent breeding facility in Indiana. An astute doctor suspected LCMV and the diagnosis was confirmed. The breeding facility was a pretty large one, housing approximately 155 000 (!) mice and 14 000 rats. An investigation of facility personnel ensued and approximately 25% of employees had antibodies against the virus, indicating previous infection. A large percentage of the workers reported having had signs consistent with disease (e.g flu-like illness), indicating that they were likely infected and not just exposed.

Considerable effort was put into testing the animals.  Of over 1000 animals tested, 21% of mice had detectable levels of the virus in their bodies. That’s pretty impressive and concerning, both for employees and anyone receiving animals from this facility.

In response to this investigation, all mice at the facility were euthanized, and the facility was thoroughly cleaned and disinfected.

This report highlights the risk of exposure to LCMV for people who work with rodents, especially in large facilities such as this. It also highlights the risks posed to people buying rodents from these facilities, which also includes other diseases in addition to LCMV. Good general hygiene and infection control practices should greatly reduce the risk of LCMV transmission to rodent owners. In particular, efforts should be directed at new rodents, since LCMV shedding is probably greatest during the initial period after an animal enters a household or other facility. Virus shedding it often transient, and once they get out of the high-risk facility and become acclimatized to their new home, shedding rates in these rodents probably decrease over a short period of time. Overall, the risk of LCMV in someone with a pet rodent is low, but these basic preventive practices are easy to do and make a lot of sense.

Photo: Female mouse with her litter. (Photo credit: Seweryn Olkowicz) (click image for source)


NDM-1 in a cat

When bacteria containing NDM-1 (New Delhi metallobetalactamase 1) were first identified a few years ago, I talked about it during presentations as something bad that's coming our way. NDM-1 is an enzyme that gives the bacteria that possesses it resistance to a huge range of antibiotics, to the point that few or no viable treatment options are available. Given the close relationship between animals and humans, I figured it was only a matter of time before cases were identified in animals, especially household pets. A presentation by an FDA researcher at the 2012 Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) has confirmed the finding of NDM-1 in E coli from a pet cat in the US. I can't take much credit for foresight because it was pretty predictable, but it re-affirms concerns about emerging diseases and how infectious pathogens can move between people and animals.

Not much is known about this current case, since the E coli isolate was submitted for testing as part of a large ongoing surveillance study by Dr. Dawn Boothe of Auburn University. At this point, it's unclear whether the cat had been on antibiotics earlier, whether the owner had been diagnosed with the infection, whether the owner had traveled to areas where this bug was first found (e.g. India), and other relevant pieces of information remain unknown (or at least unreported).

The cat was positive for the NMD-1 E.coli on multiple samples.  The most intriguing aspect of this case is the fact that the culture samples from the cat were collected in 2008 and 2009 - at least a year before NDM-1 was first identified in the US. That's strange and concerning, and raises lots of questions about where this super-E.coli originated.

Some possible origins of the NMD-1 E.coli in this cat include:

  • The owner may have traveled to an area where the bug was present, became a carrier and spread it to his/her cat upon returning home.
  • The owner could have been infected when traveling, but it the infection may have been minor such that it didn't require medical care or a culture wasn't taken (so no one knew it was being caused by a super-bug), and subsequently the owner passed it on to the cat. (Remember that NDM-1 is a major concern because very few antibiotics are effective against it. However, the enzyme doesn't make the bacterium that carries it inherently more able to cause disease, so minor infections are possible.)
  • On ProMed, the moderator stated that he believes stowaway rodents from India or Pakistan likely carried the bug to the US and spread it amongst other rodents, with eventual exposure of the cat through catching an infected rodent. It's possible but it's a major stretch, in my opinion.
  • Perhaps the cat came from one of those endemic regions. That's pretty unlikely but there's a lot of animal movement around the world, with very little regulation, so it is possible.

We may never know how this cat got infected, but this case should be a reminder that we need to pay attention to animal populations in parallel with the human population. I keep saying it, but getting action has been difficult. People like to talk about "One Medicine," but actually getting people to practice "One Medicine" has been easier said than done.

Another rabid beaver

I don't know whether it's because

a) there are more rabid beavers these days,

b) rabid beavers have always been around in these numbers but they have recently acquired a taste for human flesh, or

c) it's just a fluke,

but another rabid beaver was recently reported in the US.

The latest incident involved a beaver in West Springfield, Virginia that chased after some kids at a nature centre. The kids had been swimming and saw a beaver swimming towards the dock. It's not that unusual to see beaver's swimming around in some areas, but like most wildlife, they typically stay away from people. Not this one though. It "leaped out of the water onto the dock, acting aggressively and chasing the children." Police shot the animal and testing confirmed it was rabid. Presumably, no one required post-exposure treatment since there were no bites.

While rabid beavers are rare, this and earlier incidents involving attacks by rabid beavers, otters and other critters highlight some basic principles regarding rabies safety:

  • Stay away from wildlife.
  • Mammalian wildlife that are acting abnormally, including displaying no fear of humans, should be considered rabid until proven otherwise.
  • Any bite by a wild mammal should be considered a potential rabies exposure. The animal should be tested whenever possible and if it can't be shown that the animal wasn't rabid, it must be assumed that there was rabies exposure.

Common sense goes a long way toward avoiding rabies exposure, but sometimes it's not avoidable. Knowing what to do in the event of a bite from a wild and potentially rabid animal is important. The key is involving physicians and public health personnel who understand rabies exposure risks, so that a proper risk assessment can be done and treatment can be started promptly if it's indicated.

Image: A North American Beaver (Castor canadensis), by Laszlo Ilyes (click image for source)

Echinococcus in Canada

If you ask people about tapeworms, they typically think about the "ick" factor of having a  large worm in their gut, but they probably don't get too concerned. However, some types of tapeworm infection can be serious health problems in humans and animals. One of the worst is infection by the tapeworm species Echinococcus multilocularis. A couple of recent reports about E. multilocularis in Canada have received a lot of attention.

With Echinococcus, the problem isn't the worm living in the intestine. Adult worms live in the intestinal tract of only "definitive hosts," which are primarily foxes and coyotes in North America. The worms aren't necessarily a problem for these animals, but they can pass large numbers of tapeworm eggs in their stool. The parasite's normal life cycle continues when small animals (e.g. rodents like mice and voles) swallow a tapeworm egg. The parasite then develops into a cyst in the animal's body, and if/when the little critter is eaten by a fox or coyote, the cyst gets eaten too and the fox/coyote develops a new adult tapeworm in the intestinal tract.

When it comes to people (and some other domestic species), the problem is what happens when they ingest tapeworm eggs. Like in rodents, the eggs hatch and the immature parasites migrate through the intestinal wall, and can then spread to virtually any place in the body. They can then develop into large cysts that, over a long period of time, result in serious disease. Large cysts and/or cysts in critical areas (e.g. the brain) can be devastating. Treatment is difficult, prolonged and expensive, and death rates are high.

Dogs are a bit of an oddity in this cycle, since they can carry adult tapeworms (not surprising, since they are similar to foxes and coyotes) but they can also get these large tissue cysts. From public health and infection control standpoints, dogs shedding Echinococcus eggs are the main concern, but cysts are potentially devastating in the rare dog that develops one, just as they are in people.

Recent concerns revolve around two papers, one that described a dog from British Columbia with Echinococcus cysts (Jenkins et al. Emerging Infectious Diseases 2012) and a study that identified E. multilocularis eggs in feces from 23/91 (25%) urban coyotes in Alberta (Catalano et al. Emerging Infectious Diseases 2012).

What's the risk in Canada?

It's low.  Actually it's very low, and there have been only a handful of cases diagnosed even in people in North America. But with a serious disease like this, you can't ignore it. If Echinococcus is spreading in coyotes and foxes, it creates the potential for exposure of other species (including humans). The risk gets higher as coyotes and foxes get closer and closer to people and dogs, as is happening in some areas because of urban sprawl. The more coyotes that are around and the closer they are to human populations, the greater the chance that a person or dog will inadvertently ingest a tapeworm egg from coyote feces. Dog parks may be of particular concern because of the high traffic through them and the potential for them to be a big mixing site between wildlife, pets and humans.

There shouldn't be any panic because of this, as it still remains an extremely rare disease. But, it's not much consolation that it's a rare disease if you're the one with a big Echinococcus cyst in the brain. So, while the risk is low, we don't really know (yet) whether it's changing, and it's worth using some basic practices to reduce the risk. These include:

  • The standard: Don't eat poop. Pretty straightforward but easier said than done, in many respects, since fecal contamination of the environment is pretty common. Avoiding inadvertent ingestion of feces can be done through proper handling of dog and wildlife feces and attention to handwashing.
  • Controlling rodents and preventing pets from catching and eating rodents.
  • Preventing dogs from eating wildlife feces.
  • Routine tapeworm deworming should kill Echinococcus and if a dog is at particularly high risk, more regular testing and treatment for tapeworms may be indicated. Not many dogs fit into that category at the moment, though.

Image: Echinococcus multilocularis isolated from a fox in Hungary.  Unlike the very long tapeworms of the Taenia genus, which are most commonly found in dogs and cats, Echinococcus tapeworms are quite small (the bar in the picture is 0.5 mm), but the eggs shed in the feces of animals with an intestinal infection (involving mature adult worms) are virtually identical to those of Taenia spp. (click image for source).

2011 US Rabies recap

The annual US rabies surveillance report has been published in the latest edition of the Journal of the American Veterinary Medical Association (Blanton et al 2012). There's not really anything earth-shattering in it, but it's a good overview of the rabies diagnoses in the US from 2011. As always, it only provides a peek into rabies in wildlife (since only a small percentage of wildlife with rabies get diagnosed and reported) but numbers and trends in domestic animals, along with general wildlife data, provide useful information about the state of this virus in the US. Among the highlights:

  • Rabies was diagnosed is 6031 animals and 6 people, from 49 states and Puerto Rico (Hawaii remains rabies-free). This is a 2% drop in animal cases from 2010, but I don't put much stock in that because the numbers are weighted towards wlidlife cases, and it's hard to have confidence in year-to-year numbers of rabid wild animals (because it's so dependent on what actually gets tested).
  • The main wildlife species that are involved in maintaining the rabies virus in the US (reservoir species) continue to be raccoons, bats, skunks and foxes on the mainland, and mongooses in Puerto Rico. The relative importance of these species varies between regions.
  • Raccoons were the most commonly affected species, accounting for 33% of all rabid animals reported. Other leading species were skunks (27%), bats (23%) and foxes (7%). Less common species included coyotes, bobcats, javelinas, deer, otters, mongooses, wolf hybrids, groundhogs and beavers.
  • Cats were the leading domestic animal, with 303 diagnosed cases. Dogs came in next with 70, followed by cattle (65), horses (44), and goats and sheep (12). There were also single cases in a domestic bison and an alpaca.
  • The six human cases represent the highest annual number of cases since 1994, if you exclude 2004 where four cases were associated with transplantation of organs from a single infected person. In a review of the 24 domestically-acquired human cases from 2002-2011, 88% were linked to bats.
  • Three of the six 2011 human cases were acquired outside of the US; one each from Haiti, Afghanistan and Brazil - and all from dogs.
  • Two of the three domestically-acquired cases were associated with bat contact. The source of the remaining case, an eight-year-old girl, is unknown, but contact with cats from a feral colony near the girl's school is a possibility.
  • 5/6 people with rabies died. That's actually an impressive survival rate, since any survival is still a very noteworthy event when it comes to rabies. The survivor was the eight-year-old girl, and she apparently has suffered no longterm cognitive impairment.

 Interestingly, we get a good synopsis of Canadian rabies data in this report too:

  • 115 rabid animals were identified, with 92% being wild animals.
  • There were three rabid livestock (two of which were horses) and six dogs and cats.
  • No rabid raccoons were identified, continuing a trend started in 2009.

And regarding rabies in Mexico:

  • 148 rabid animals were identified, mainly cattle (82%).
  • Rabies was diagnosed in 20 dogs, with evidence that the canine rabies virus variant (which has been eliminated from Canada and the US) is circulating in some regions.
  • There were three humans cases: two acquired from vampire bats and one from a skunk.

Guelph Humane Society reopens

The Guelph Humane Society has re-opened after a temporary closure to manage a potential ringworm outbreak. The shelter took an aggressive, proactive approach to the issue, including testing and treatment of all animals and thorough disinfection of the facility.

Looking back on a proactive outbreak response like this one, it's always hard to say if a bad outbreak didn't develop because it wasn't going to, or because of the early aggressive response (i.e. did it get better because of what they did or despite what they did). However, if you sit back and wait (or remain in denial), you can be sure that it's much more likely that badness will develop.

Once things have settled down, people sometimes complain that an aggressive response was unnecessary because nothing bad happened, but they're often the same people that complain that not enough was done when an major outbreak occurs. An ongoing challenge in infection control is fighting complacency, since successful infection prevention and control programs sometimes lead to people forgetting about the bad things that can happen and why such programs are in place to begin with. We should applaud facilities that "suck it up" and accept the negative PR, time and financial consequences of an appropriate response in order to protect the health and welfare of the animals for which they care and all the people (employees and public) who have contact with them.

Biohazardous hedgehogs

When I give talks about pet therapy animals, I talk about appropriate and inappropriate animals. On one slide I have a picture of a hedgehog, and I use it as an example of an animal that sometimes makes its way into pet therapy programs, despite standard guidelines to the contrary.  This is a species that raises significant infectious disease concerns because hedgehogs can carry an impressive array of microorganisms that can be spread to humans. A big one is Salmonella.

So, it doesn't come as too much of a surprise that the CDC is reporting a multistate outbreak of salmonellosis associated with hedgehogs. Here are the highlights:

  • Fourteen infections have been reported between December 2011 and August 2012. There are probably many more because in most outbreaks, only a minority of affected people get tested.
  • People have been infected in six states (Alabama, Indiana, Michigan, Minnesota, Ohio and Washington), all with the same strain of Salmonella Typhimurium.
  • All 10 people that were interviewed reported contact with hedgehogs or their environments. Considering the rarity of hedgehogs as pets, that's a pretty good indicator that hedgehogs were the source. The outbreak strain of Salmonella was detected in two households, in areas where the hedgehogs lived or were bathed.
  • No one has died, but three people were hospitalized.
  • As it typical, a large percentage (50%) of affected individuals were children 10 years of age or under.

The fact that this outbreak appears to have occurred over a long period of time and a large geographic area strongly suggests that this might be ultimately traced back to a common breeder or intermediary source. Many small pets like these are mass produced by large breeders and shipped across the country, creating the potential for a problem at a single breeder to have far-reaching consequences in other breeder colonies and in households. This has been shown repeatedly with species like hamsters and mice.

This report doesn't mean that hedgehogs shouldn't be kept as pets. However, hedgehogs do seem to be a higher-risk species than average, and households that include high-risk individuals (e.g. young children, elderly persons, immunocompromised individuals, pregnant women) should probably avoid them. More importantly, the potential for transmission of Salmonella and other pathogens indicates the need for good basic, routine hygiene practices, such as washing hands after handling a hedgehog, keeping them out of the kitchen, not bathing them in kitchen or bathroom sinks, and supervising contact between hedgehogs and kids.

More canine norovirus

I'm not really sure what to think about canine norovirus. Is it a rare, oddball infection or is it an important, overlooked and/or emerging problem?

  • There are only a few reports of norovirus infections in dogs, but I doubt many people are looking for it.
  • I've looked for it a few times during outbreaks, but not enough to convince me it's not here.
  • Most outbreaks of canine gastrointestinal disease are not investigated, and norovirus testing isn't commonly available.

So, I think it's hard to say much about this bug at the moment.

However, another outbreak report involving canine norovirus (Mesquita and Nascimento, Transboundary and Emerging Diseases 2012) has been published, increasing concern that this might be an overlooked or developing issue. This latest report from Portugal describes an outbreak in a kennel that started after the introduction of some dogs imported from Russia (yet another example of the problems that can occur with dog importation, especially in the absence of good quarantine and infection control practices).

The outbreak started after two dogs from Russia were brought into a Portuguese kennel. Both had diarrhea at the time of arrival (strike 1 - introduction of new dogs, particularly sick dogs, is just asking for an outbreak) and were put into the general dog population (strike 2).  Two days later, the other five dogs in the kennel developed diarrhea (not surprising). All were positive for canine norovirus (ok, that's surprising) and within one week, all the dogs appeared to have fully recovered.

There's no mention of whether testing for other causes of diarrhea was performed, but I assume that's the case. The sudden onset, rapid transmission and relatively short, self-limiting course of disease is consistent with norovirus infection.

Canine norovirus has been found in Portugal before, and the virus found in these dogs was very similar to previous Portuguese isolates. Whether that means the dogs acquired the virus in Portugal en route to the kennel or whether this virus is widely disseminated internationally isn't clear (in large part because so few people have looked for canine norovirus).

Much more remains to be learned about this virus. It should be considered in outbreaks of diarrhea in dogs, especially outbreaks involving rapid transmission between animals. A major obstacle to obtaining more information about this pathogen is the general failure to investigate outbreaks in which it may be involved. While outbreaks are often dramatic, testing is usually limited because of the cost. That's especially true when dogs aren't dying. Often, testing for rare or potentially new problems only occurs when there's a complete disaster and/or if an interested researcher or diagnostic laboratory gets wind of it and is willing (and able) to do some testing at no cost. That's not often an option. I do testing as much as I can, but I don't have any money dedicated to outbreak investigation so it depends on whether I have spare resources to put into an investigation at the time.

The risk to people from canine norovirus is not known, but is probably limited. There is some evidence of potential transmission of noroviruses from pigs or calves to people, but the risk from canine norovirus isn't clear. Common sense practices to avoid contact with diarrhea (from any animal) should be used, as much to prevent exposure to the pile of other pathogens that can be in dog poop, as to prevent potential exposure to canine norovirus.

Rare Eastern equine encephalitis infection in a dog

An 8-week-old puppy in Van Buren County, Michigan has died from infection by a virus that normally infects horses.  This is a rather rare occurrence of a nonetheless devastating infection. The puppy was euthanized after developing seizures and other neurological abnormalities, and Eastern equine encephalitis (EEE) virus infection was ultimately diagnosed.  Testing for this and other viruses was probably undertaken because of concerns about rabies.

EEE virus is a mosquito-borne virus that circulates in the bird population and is spread by mosquitoes. Horses are the main victims of infection but disease can occur in various other mammals, including people and dogs.

Canine infections are very rare and this can be considered an "oddball" infection. There's no evidence that dogs are at any elevated degree of risk compared to previous years, but it is a reminder that while infections are rare, dogs can be susceptible to EEE. The puppy's young age probably played a role and certain groups (e.g. puppies, elderly dogs, dogs with compromised immune systems) are presumably at greater risk of illness than the normal dog population. The other obvious implication of this report is that it is clear that EEE is circulating in mosquitoes in the area. That means other susceptible species, namely horses and people, are also at risk of exposure.

EEE in people is pretty high on the badness scale. It's fortunately rare but when it strikes, it's usually fatal. The same is true for horses. There is a vaccine for horses but not for people, so the main protective mechanism for people is mosquito avoidance.

As with EEE in horses, infected dogs pose no real risk to humans. The virus is not spread by regular contact and dogs don't develop high enough viral levels in their blood to be able to infect more mosquitoes (who could then infect people). There's a potential risk of transmission through contact with infected tissues during post mortem examination (necropsies) but standard practices used to prevent transmission of other diseases (e.g. rabies) should be effective for EEE as well.

Banner year for West Nile virus

After being a relatively rare problem in most regions over the past few years, West Nile virus (WNV) case numbers have boomed lately, with large outbreaks in some US states.


Forty-nine (49) confirmed or probable human cases have been reported in Ontario, the largest number in a decade. Considering we're just heading into the typical peak WNV season, it's quite concerning as the worst may be yet to come.  At this time last year, there were only 24 reported cases.

Human cases have been reported in at least four other provinces: Alberta, Manitoba, Saskatchewan and Quebec.

Two equine cases of WNV have been reported, one in Saskatchewan and one in Quebec. It's hard to have a lot of confidence in this number because of the poor surveillance and reporting for this disease in animals in Canada, given that the CFIA has largely washed their hands of dealing with it. Infection with West Nile virus has been pretty much a non-entity in most regions over the past few years, at least in terms of diagnosed cases, and it remains to be seen whether equine cases will mirror the spike in human cases this year. Typically the trends are similar each year, so the next few weeks will tell us a lot.

United States

The US is in the midst of its largest WNV outbreak ever. At least 1118 human cases have been reported so far in at least 37 states, with at least 41 deaths. Typically less than 300 cases are reported by this time of year.  Texas has experienced a huge outbreak, accounting for about half of the US cases.

There hasn't (apparently) been a surge in equine cases, with less than 100 cases of WNV reported in horses as of August 18. Whether that's because of infrequent testing, biological or geographic factors resulting in less equine exposure or vaccination of horses (remember that there is no WNV vaccine for people) isn't clear.

Concern is being raised about risks to pets, but the true risk is very limited. While WNV infections have been reported in dogs and cats, these are extremely rare and dogs and cats are failry resistant to the virus.


Often, when a new infectious disease emerges, the first year or two are the boom years, after which things settle down. That was the pattern with WNV in most areas; however, this year in on track to meet or surpass the numbers from those early years.

Why is this happening? No one knows for sure. Changing weather patterns, by chance or through the larger spectre of global warming, are probably playing a major role. Warmer temperatures let mosquitoes mature faster and allow the virus to grow quicker in the mosquitoes. Milder winters help mosquitoes survive. Any factor that fosters more mosquito numbers and growth, particularly the subset of mosquitoes that bites both birds (the reservoir of the virus) and people, can increase the risk of human and animal exposure. Changes in rainfall, wetland management, climate and human proximity to mosquito breeding sites can all play a role.

Another shelter outbreak...a different response

'Tis the season for ringworm, I guess.

The Guelph Humane Society has closed to visitors, and adoptions have been suspended in response to concerns about the potential for a ringworm outbreak. Implementing a proactive response, all animals are being tested for ringworm and all cats are being treated. While the scope of the problem isn't yet clear (and hopefully it's minimal), this type of response is the optimal approach because waiting to "see what happens" and waiting for culture results (which can take a long time) before deciding to take aggressive measures results is a much greater chance of things getting out of hand.

In an outbreak like this, the first week or so is critical. Introduction of an animal that's carrying ringworm is hard to prevent, as is limited transmission within a shelter (even with good routine infection control practices) from that first case. That's the non-preventable component of shelter diseases. However, it's the 2nd generation of transmission (transmission of ringworm from that initial animal or group of animals to the broader population) that leads to things getting out of control. That's the preventable fraction of infections, on which we can have the biggest impact. It's during this early phase where intervention is critical  It's always better to have an overly aggressive response and simply tone it down after a few days, than to have an inadequate response that lets things spiral out of control.

More information about ringworm can be found on the Worms & Germs Resources - Pets page.

Transfusion-associated equine infectious anemia

A few years ago, I looked out my kitchen window one holiday morning and saw a newborn foal running outside of a fence line. The foal had been born to my neighbours' mare, a maiden mare, and they were out of town. The mare had rejected the foal and wasn't interested in any of my attempts to get them back together. She also had little colostrum (the first, antibody-rich milk that foals need to drink early in life to survive). To make a long story short, I ended up doing a field transfusion, collecting blood from another horse on the farm to give to the foal, to provide it with those much-needed antibodies. The donor horse was healthy and I didn't know of any disease issues in the area, so I was pretty confident that there wasn't a significant risk of disease transmission, but you never know. Ideally, equine blood donors are screened for infectious diseases, particularly equine infectious anemia (EIA), since EIA is a rare but nasty disease that can be spread by blood.

When I started to read a report the other day about a transfusion-associated EIA infection in a German foal, my first thoughts were "that's bad," followed by my ever-optimistic side thinking "well, maybe it was an emergency transfusion and it was a bad but unavoidable consequence" or "maybe it the donor was properly screened but was infected with the EIA virus after it's last test" (the latter situation is an ever-present risk when you are screening donors in advance (days, weeks or months) of collecting the blood for transfusion, since test results only tell you what their status was at the time of testing).

Unfortunately, it didn't take long to see that this wasn't an unfortunate or relatively unavoidable infection. Rather, I can only interpret this as stunning negligence.

Here's the story

  • On August 2, EIA was confirmed in a 3-month-old foal in North Rhine Westphalia. When the foal was two days old, it had a septic joint (and probably an overall deficiency in antibodies) and was treated with a plasma transfusion, which is a pretty standard procedure in such a case.
  • EIA antibodies were then detected in the donor.
  • Since 2009, 20 other horses had received plasma from this horse. Four have been confirmed as infected, and horses that live with these infected animals have been quarantined until test results are back. Positive horses are typically euthanized because they pose a lifelong risk of transmission of the virus to other horses.  The four positive horses in this case have been euthanized (and presumably the foal as well).

So, this wasn't some random emergency field transfusion, or a donor that got infected after testing. It appears that this donor has been used for years with no testing, despite the fact that it's well known that EIA transmission is a risk from blood transfusions and the virus is present (albeit rare) in Germany. While there are no standards of care for equine blood transfusions (as opposed to dogs), EIA testing is a standard recommendation in anything I've seen written about equine blood donor programs (click here for one example). Sometimes you get put into situations where testing can't be done in time for logistical reasons, but I can't see how anyone would not test horses that are to be used for a formal donation program or repeated transfusions. Failure to do low cost and easy EIA screening of that donor horse has resulted in the deaths of multiple horses, with the potential for even broader secondary transmission of this virus to additional animals.

KW shelter ringworm outbreak continues

As expected, the KW humane society ringworm outbreak has gone from "we'll be open in a couple days" to "it may take months to clear it up."

The scope of the outbreak isn't really clear from press reports, but "a couple" of other animals now have signs of the skin disease. Investigation of the timing and likely sources of exposure of new cases is crucial. They may just be animals that were infected early, before the problem was recognized (the best case scenario) but investigating these "new" cases is very important because if these animals were exposed after the outbreak was identified, then there are problems with containment.

Shelter personnel have declared that they aren't planning on euthanizing more animals, but the shelter remains closed for adoptions. Stray animals will continue to be accepted. This creates a tricky situation where new animals (e.g. fuel for the fire, if things aren't under control) come in and can actually propagate the outbreak. It also creates overcrowding issues since the shelter was probably pretty full to start with, and continuing admissions with no adoptions can't be maintained for long. The shelter is looking at renting units in which to put animals - this is a relatively common approach for creating more contained spaces, and one that can be useful if good infection control practices are in place (although I've seen too many outbreaks where the offending pathogen quickly makes its way into the new units). Clear policies, sound training, careful supervision, exquisite planning and good communication are critical for making a situation like that work.

While the shelter has gone from an unrealistically optimistic time frame to a warning about long-term efforts, as with most things in life, the middle ground is usually the most accurate. Ringworm outbreaks can't be declared over in a few days (it's possible to contain it in a short period of time, but not declare an outbreak over). A few days isn't even enough time to get culture results back to figure out exactly what's happening. Testing, isolation, cohorting, mass treatment, evaluation of training, evaluation of infection control practices, and similar measures are needed, but if done right, an outbreak can be contained in a reasonably short period of time. Given the need to repeatedly treat all animals (affected animals are being bathed every three days with a medicated solution) and the time lag for ringworm culture, it's going to take at least a few weeks, but let's hope this outbreak ultimately gets measured in weeks rather than months.

Dog bite infections in the news

It might just be my perception, but it seems like there are a lot more reports of nasty dog bite infections in the news lately, particularly infections caused by the bacterium Capnocytophaga canimorsus. I don't know whether that's because they are becoming more common, more commonly diagnosed (since the bug is hard to identify), more commonly reported in the press or a combination of all three (or whether my perception is simply incorrect).

The latest report is from Omaha, Nebraska, where a 50-year-old man died four days after suffering a minor dog bite on the cheek. The cause of infection wasn't reported, but the article says that he was unable to fight the infection because he didn't have a spleen. For me, minor bite + fatal infection + no spleen = Capnocytophaga infection until proven otherwise, since this is a textbook description of such an infection, and Capnocytophaga can be found in the mouth of virtually every dog.

This follows the high-profile case of a cancer survivor who lost her hands and feet from Capnocytophaga infection complications and a UK inquest into the death of a man caused by infection with this bacterium, among other cases.

Here are the simple take home messages:

  • Avoid bites and any interactions whereby dog saliva may come in contact with non-intact skin.
  • Know if you are at high-risk for an infection caused by a bug like Capnocytophaga.  This bacterium typically doesn't cause disease in healthy individuals but can produce rapidly fatal disease in certain people.
  • Realize that minor bites can cause major problems (even if you are otherwise healthy).
  • Use good first aid practices if you or someone you're with is bitten, including careful washing of the wound and seeking medical care if you are at increased risk of infection, or if the bite is over the hands, feet, face, joints or other sensitive areas.

KW Humane Society outbreak update

The latest info on the ringworm outbreak at the KW Human society come from the Waterloo Record (unfortunately there's still no information on the Humane Society's own website...).

The facility was closed to the public on August 4th because three cats and one dog were showing unspecified signs of ringworm.

Samples were collected for testing, but they decided to euthanize the 4 animals.

"You’re kind of under the gun to decide what you want to do,” said their operations manager. I can certainly empathize. It's not easy to deal with an outbreak. However, from my standpoint, if you feel like you're under the gun in that kind of situation, you're likely to make (or to have already made) mistakes. If you're managing the situation well, getting advice and following standard practices, you may be stressed, exhausted, humbled and concerned, but you shouldn't feel "under the gun." Maybe euthanasia was warranted here, but with a small number of infected animals, the ability to potentially isolate and treat them, and lots of information about how to manage ringworm to avoid further spread, it's important to avoid a panic response that leads to premature euthanasia decisions.

The three cats that were euthanized apparently did not have ringworm, but the shelter is "certain" (not sure how) that the dog had ringworm. Sudden onset of skin lesions in dogs and cats at the same time is certainly suggestive of ringworm, and if the dog was truly infected, it's hard to believe the cats were not (especially since cats are most often affected in ringworm outbreaks compared to dogs). So I wouldn't be too quick to rule out ringworm in the cats. Ringworm culture can take a couple of weeks, so it's not clear to me whether this interpretation is based on culture results or not. 

"With the results being better than expected, the humane society will not have to move larger numbers of possibly infected animals to a different facility — the usual procedure in an outbreak." While I can't say too much from a distance, I can say that moving animals to another facility is certainly not a typical outbreak response measure. It's an effective outbreak propagation measure, since it can easily disseminate ringworm to other places, so it's good to hear that they are not planning on moving animals. It's much better to manage things well at one site than to have to manage things at multiple sites.

They state that "the situation now appears to be under control." Hopefully that's true, but it's way too early to say. You can't declare an outbreak over a few days after you declare that it started. There hasn't even been enough time for any animal or environmental ringworm culture results to come back. Closing, testing, treating all exposed animals and thorough cleaning and disinfecting of the environment can be a great start, but trying to say "we won" too early often leads to inadequate response and continuation of the outbreak.

"We’re keeping our fingers crossed and hoping that everything comes back negative so we can be open for business sometime next week" Again, I'm not involved and I'm working with sparse information, but this seems to be way too early to reopen the shelter. You need to make sure things are really under control before you get out of "outbreak mode" and before you can be "open for business" again. That's especially true with a disease like ringworm that is highly transmissible and can be spread to people. Too often, a small outbreak is identified and declared over prematurely, only to be followed by a big mess in short order. Let's hope that's not the case here.

Image: Photo of a dermatophyte-positive culture specimen, which can take two weeks or longer to grow.

Eastern Equine encephalitis alert: Ontario

If I was reincarnated as a mosquito, I'd want to live where I do now (convenient, eh?). I live in the country surrounded by areas of "protected wetland," which, in many cases, is a fancy word for swamp. I try to avoid mosquitoes, but getting bitten is a regular (daily) event. As I was getting swarmed last night, I was thinking that the mosquito-borne disease I'm really concerned about is Eastern equine encephalitis (EEE). While quite rare in Ontario, with only a handful or no cases in horses every year, it's a worry because it's almost always fatal. It also affects people, not via transmission from horses but from being bitten by mosquitoes that pick up the virus from birds. It's very rare in people, but it's highly fatal.

This is the time of year that we start seeing mosquito-borne infections in Ontario, and a Disease Alert from the province re-inforces concerns about EEE. The alert was issued in response to a case of EEE in a horse in New York state, not far from the Canadian border. The horse, from the Ogdensburg, NY area, showed signs of illness on July 23 and died the next day (a pretty typical progression for this disease). Since mosquitoes don't respect borders, cases in this neighbouring region suggest that infected mosquitoes might also be active in Ontario.

EEE isn't the only mosquito-borne virus that we worry about - West Nile virus being the other main issue around here - so mosquito control and avoidance are important. While you can never guarantee that you or your animal will not encounter a mosquito, various things can be done to reduce mosquito numbers (e.g. eliminating sites of standing water (which are mosquito breeding sites) wherever possible... swamps being a logical exception) and to reduce the risk of being bitten (e.g. avoiding high risk areas and times, long clothing, mosquito repellants). Vaccines are available for EEE and West Nile virus in horses (but not people), and the risk of these diseases should be considered when designing a horse's vaccination program.

Killer rabbits and other strange rabid animals

Rabies is most commonly reported in dogs, skunks, raccoons, bats and a few other species. However, any mammal is susceptible, and sometimes unusual cases are identified.

1. In a serious take on Monty Python's "killer rabbit," a rabid bunny has caused a lot of problems in Chom Thong, Thailand.

The pet rabbit, Poko, had been purchased last year and starting biting the feet of people in the family on June 10. The rabbit was eventually put in a kennel and died July 28. The other rabbit in the house died the next day (no word on why). The time frame is a bit strange, since if the rabbit was biting because of rabies, it should have died a lot quicker. Once an animal is showing signs of rabies, death occurs quite quickly (usually within 10 days), not over a period of 7 or 8 weeks. So, most likely the rabbit wasn't biting because of rabies, at least at the start.

In response to the diagnosis, authorities have launched an investigation and 120 health officials are fanning out in the area to look for other rabid animals, since where there is one, the are others. Dogs and cats within 5 km of the rabbit's home are being vaccinated against rabies. Family members are being given post-exposure prophylaxis. The father has expressed concern that the treatment was too late since they were bitten several days before, but it's not really much of a risk. Rabies typically has a long incubation period, especially with bites to lower extremities, and starting treatment a few days (or even weeks, in some situations) after exposure can still be effective (albeit the sooner the better). The key is for treatment to be started before any signs of rabies develop - after that happens there's very little that can be done.

The source of rabies isn't clear and I haven't seen any speculation. If the rabbit was caged, then there aren't too many possible sources, with bats probably being the most likely.

2. Swimmers beware... it's not just rabid otters you need to worry about.

A man swimming in eastern Pennsylvania was bitten by a beaver that was subsequently identified as rabid. The beaver apparently attacked a canoeist earlier that day, before encountering the swimmer, a Boy Scout leader. The man suffered 15 lacerations from the attack, and the beaver remained firmly attached to the man's arm as he was helped to shore. The stubborn critter wouldn't let go until the resourceful (and brave) Scouts got it off by hitting it with "anything they could find around them, sticks, rocks..." The beaver was killed and confirmed as rabid.

It's another reminder that any bite from a mammal should be considered a possible rabies exposure. It's also a reminder to avoid contact with wildlife, although that can be easier said than done when a rabid animal is involved.  

Salmonella in zoo education reptiles

There was a picture in the weekend edition of the Guelph Tribune of a 3-year-old girl with a large python wrapped around her as part of a nature show put on by the Guelph Lake Nature Centre.

While I'm certain I'll face more wrath from the keep-reptiles-in-schools group that is currently bashing me on the internet (there's even a Facebook page... at least I'm making an impact!), this brings up a few serious issues. One is the whole idea of putting a python around the neck of a young child. I won't go there, and in reality the risk of injury is very low. The main issue is, obviously, Salmonella exposure, because of the high rate of Salmonella shedding in reptiles and the high susceptibility of young kids to salmonellosis. A recent paper in Zoonoses and Public Health (Hydeskov et al. 2012) provides more evidence that the concerns about Salmonella exposure in such situations are valid.

  • This study involved the reptile collection at the Copenhagen Zoo. There, the reptile collection consists of two groups: the main group is comprised of animals in the breeding centre, quarantine station and the primary zoo exhibit; the other group is a smaller collection that's used for education and hands-on teaching. The latter group has direct contact with many people, including kids.
  • Salmonella was isolated from 35% of reptiles overall, with the highest prevalence in snakes (62%).
  • Reptiles from the education group had a significantly higher prevalence than the other reptiles; 64% vs 23%.
  • While these numbers are high, they are presumably an underestimation, since other studies have shown that you will miss a reasonable percentage of positive animals if you only test a  single sample from each individual. So, it's fair to say that at least 62% of snakes and at least 64% of education-group reptiles were Salmonella positive.

Has the zoo ever been the source of Salmonella in a person? Nothing's been confirmed; however it's important to note that in Denmark, official investigation of salmonellosis cases only occurs as part of an outbreak. Since reptile-associated salmonellosis would most likely occur as sporadic cases, not an outbreak, cases might not be identified and reported.

It's also possible that the zoo hasn't been a source, because of the short-term nature of contact with the reptiles, contact only by older children and their hygiene practices.

At the Copenhagen Zoo, all reptile contact by kids is supervised, and students are required to wash their hands after touching a reptile. That's a great approach (as long as compliance is good), and the risks should be low for a short-term supervised activity such as this. High-risk kids, from an age standpoint, aren't involved since only 7-18 yr old students participate. So, the main group that would be of concern is immunocompromised children, who comprise a small but important subset of participants, and one that may slip by the established control measures since not all immunocompromised kids are readily identifiable. Unless schools know about all high-risk kids (and I'm far from convinced they do) and know that there are things these kids shouldn't do (e.g. have contact with reptiles), there are still some concerns. Those can be lessened further by ensuring that there is good communication between parents and the school, such that schools are really aware of any high-risk kids. That requires adequate knowledge on the part of the parents and the school, good communication in both directions and trust (since private health information is being disclosed). We have a long way to go to get there, and few people seem interested in starting those discussions.

Back to the Guelph paper photo. This wouldn't happen at the Copenhagen Zoo, since they apparently don't let 3-year-olds have contact with reptiles. I wasn't there so I don't know what was done in terms of hygiene, but even if this girl washed her hands after, there would still be a good chance that Salmonella was present on her skin or clothing based on how she handled the animal. This nature centre does some excellent work but I worry about the shows they offer for birthday parties. Their advertisement for this, with the "bring your cake and touch a snake" approach, and the picture of another young child with a snake draped around her raises concerns.

Reptile contact isn't inherently bad. There are just situations when it's high-risk and should be avoided. Beyond that, if it's going to be done, it must be done right. Unfortunately, more often than not, that's not the case.

Guinea pigs and ringworm

As with most "pocket pets," guinea pigs don’t get a lot of attention in the scientific literature. As a result, we are limited in what we know about certain diseases in this species, and we tend to rely a lot on personal experience, small case studies and extrapolation from other species. It’s not that these sources of information are bad, they’re just not a replacement for larger, more controlled studies.

A recent study in the journal Mycoses (Kraemer et al. 2012) provides a rather comprehensive overview of ringworm (dermatophytosis) in these little fuzzy critters. The authors surveyed 74 owners of guinea pigs with ringworm and veterinarians. Here are some highlights from the results:

  • 97% of ringworm infections were caused by Trichophyton mentagrophytes. Ringworm can be caused by a few different species of fungi, with a different organism, Microsporum canis, being most common in dogs and cats.
  • 43% of the time, a new guinea pig was introduced into the household in the weeks preceding the onset of disease, and around one-third of affected guinea pigs had been in the household for less than 3 months. That’s not too surprising, since new animals are often a prime source of infectious diseases. It shows the importance of ensuring that new pets are examined carefully and are healthy before they are brought into the household. It’s certainly no guarantee that there won’t be problems, since healthy-appearing animals can be shedding various infectious agents, but it helps reduce the risk.
  • Ringworm lesions were most common around the head. Hair loss was the most common sign, with scaling and crusting also common.
  • Signs of ringworm were also present in other guinea pigs in the household in over one-third of cases.
  • Various treatments were used and some animals weren’t specifically treated.  In fact, 7/8 of the guinea pigs that did not receive specific anti-fungal therapy got better. It's known that ringworm can be self-limiting (meaning the animal will get better on its own over time). However, treatment can speed the process up and decrease the likelihood of transmission to other animals or people.
  • In 24% of cases, people in the household also had signs of ringworm, on the head, neck and arms. Children were most commonly involved. That’s not too surprising since kids probably had more contact and closer contact with the animals than their parents.

While not a severe disease, ringworm is a problem because it’s highly transmissible. It can easily and quickly spread between animals, and between animals and people, and elimination of ringworm from a highly contamination household can be a major hassle. Presumably the risk of widespread environmental contamination is less with guinea pigs compared to dogs and cats because of their smaller size and tendency to be kept confined to cages most of the time.

Ringworm should be considered in any guinea pig that develops hair loss or other skin/hair problems. This is particularly true if it’s a new acquisition or if a new guinea pig has been introduced to the household recently.

If ringworm is suspected, a prompt visit to the veterinarian is in order. The guinea pig should be handled sparingly (or ideally, not at all) until the cause of the skin disease is identified. Close attention should be paid to hand hygiene, and even the use of gloves could be considered, although gloves aren’t a cure-all and people sometimes misuse gloves to such an extent that they actually increase the risk of spreading disease.

If a new guinea pig is obtained, it’s ideal to have it examined by a veterinarian before it comes into the household. I’m a realist and realize this is unlikely, but it’s ideal. In lieu of that, it’s important to get a guinea pig from a reputable source, to ensure that other guinea pigs from the same source don’t have skin disease, and to carefully examine the animal for skin lesions before it gets home. It’s also ideal to keep any new guinea pig in its own cage for a couple weeks to act as a quarantine period and allow for identification of any incubating diseases.

If owners of an infected guinea pig develop skin lesions, they should be examined by their physician, and make sure the physician knows they have been in contact with an infected animal.

(click image for source)

Essential oils...the overlooked MRSA "solution"?

Methicillin-resistant Staphylococcus aureus (MRSA) and other antibiotic-resistant bacteria are big problems. They account for millions of illnesses, thousands of deaths and billions of dollars in costs every year internationally. Antibiotic-resistance is a complex issue, but some people try to over-simplify (and under-analyse) the problem.

A recent article on is an example. Entitled "MRSA cases double in five years while natural solution is overlooked", the article - while providing very little real information - claims that essential oils are "unmatched tools in the fight against MRSA."

  • It talks about the bacterial killing power of essential oils. That's certainly true. Many essential oils are potent antibacterial substances.
  • It also claims that essential oils are "free of the side-effects common to antibiotics." That's not so true. In fact, essential oils can be quite toxic. Tea tree oil, one of the more popular essential oils, can cause a range of adverse effects, and I'm aware of a couple of dogs that have died from suspected tea tree oil toxicity. A study presented at the North American Dermatology Forum last fall (Valentine et al.) showed that while some essential oils were effective against resistant staphylococci, they also had damaging effects on canine skin cells. One oil had essentially no antibacterial effect but did a lot of damage to skin cells.

The antibacterial effects of essential oils might be useful, but only if they do no damage to the animal (or person) at the same time. The problem is these products are not technically sold as drugs, despite the fact that they are really marketed as drugs, so they bypass the requirement to demonstrate safety and effectiveness. If a product showed good antibacterial activity and no toxicity, it would be a potential option for the treatment of superficial infections, but in the absence of proper testing demonstrating safety, I wouldn't use an essential oil, as it may do more harm than good.

The article doesn't contain much useful information and is more of an infomercial than anything else. It highlights on particular company called Young Living Essential Oils. The author of the article also seems to be that company's "Product Training Program Manager," according to articles he's also written on the website. No conflict of interest there, obviously!

A complex problem like antimicrobial resistance requires complex solutions. Non-antimicrobial options are one part of this, which is why my lab has done work in this area. However, all-natural doesn't necessarily mean safe or effective, and we need to demand proper testing of such products. Too many companies take the cheap and easy way out and don't do any testing. While they may make money, their customers (and their pets) are the ones who can end up paying the price.

Horse shipping infections...are drugs the answer?

Sometimes, I get a little concerned when research papers get picked up by the press. It's not necessarily because the research is weak, it's just that results sometimes get overstated or misinterpreted when they work their way outside of scientific forums.

A paper published in the latest edition of the American Journal of Veterinary Research is one of those. The paper (Tsuchiya et al. 2012) describes a study that looked at the impact of interferon-alpha (used to stimulate the immune system) and enrofloxacin (an antibiotic) on body temperature and lung fluid white blood cell counts in 32 horses that were shipped for approximately 26 hours in commercial vans. Horses either received just interferon or interferon and enrofloxacin before being shipped.

  • After shipping, 3 antibiotic-treated and 9 untreated horses developed fevers. That's actually not statistically significant, by my calculations, and it's quite strange that the authors didn't do that analysis (and that the reviewers didn't pick that up).
  • Two antibiotic-treated and 7 untreated horses were treated with antibiotics after arrival because of concerns about infections. Again, that's not statistically significant and it's surprising (and concerning) no one pointed that out.
  • Overall, the average temperature of horses in the treatment group was significantly lower after arrival, but the clinical relevance of that is questionable since it was only a 0.4 C difference. Further, it's hard to say what a temperature immediately after arrival really means, since that's pretty early for a bacterial infection to have developed.
  • There were significant differences in tracheobroncial fluid (fluid collected from the airways) between the groups, with lower white blood cell counts in the treated group. That's an interesting finding and is consistent with less inflammation. What that means in terms of disease prevention is harder to say, but it's something worth investigating further.
  • There does not appear to have been any difference between the two groups in the ultimate health status of the horses.

This study provides some interesting information to help us think about how, when and why infections and inflammation develop after shipping. Results suggest that antibiotics might be useful in certain situations, but many questions remain. Any antibiotic use runs some risk of complications such as antibiotic-associated diarrhea. It also increases the risk of antibiotic resistance (and ultimately more problems trying to treat disease). We have to remember these issues when considering these results. Further, while it is typically much better to prevent disease than treat it, in situations like this, it's hard to say whether mass prophylactic treatment is actually preferable to early treatment, since horses can be observed closely after arrival and treated when early signs of disease develop. Ultimately, it's still not even clear from these data whether pre-treatment with antibiotics actually does have a positive clinical effect.

It's important to remember what this study tells us, and what it doesn't. Despite what some lay articles that have picked up the story say, it doesn't mean that antibiotics are broadly useful for keeping shipped horses healthy. The authors address this by stating "The use of enrofloxacin raises concerns regarding the emergence of antimicrobial-resistant bacteria, and it is important that antimicrobials such as enrofloxacin are not used inappropriately. The guidelines for enrofloxacin use in the Japan Racing Association’s medical office require that it is only administered as prophylaxis against transportation-associated fever when the duration of transportation is expected to be ≥ 20 hours and the horse has had clinical signs of transportation-associated fever before or is considered to be at risk for developing transportation-associated fever (eg, if the horse has undergone laryngoplasty or has a history of pneumonia)."

Regarding the big picture, however, this should make us think again about how we manage horses. Antibiotics should never be used as a crutch in place of good management. In a situation like this, where 19% of horses treated with interferon and enrofloxacin and 56% of horses treated with interferon alone get sick, something's wrong. Antibiotics may be an easy way to try to reduce the likelihood of disease in some situations, but that doesn't mean it's a good idea. Considering the number of horses that get sick (and die) every year from shipping-associated illness, maybe we need to rethink how they are transported. Is lack of antibiotics the problem, or is it how (and how long) horses are shipped? Maybe long, interrupted trips aren't a good idea, antibiotics or not.

Reptile rage

I get a lot of emails about this blog. Some are complementary, some... well... not so much.

When it comes to the latter group, the most common (and often the most grammatically-challenged) group is raw meat feeders. They're a constant source of interesting comments about my intelligence and other aspects of my life. Some actually provide well-written explanations of why they do what they do and I've had some good discussions with a few. Others just like to call me stupid and move on. The guy who provides treatment recommendations for dogs based on fish antibiotics (and his buddies) was another interesting one. The dodgy equine protozoal myelitis clinical trial person (and her friends) was another (she also wrote to my Dean... that's another story).  The list goes on.

The latest group has been people upset that I have concerns about reptiles in schools. It seems that a post I wrote a while ago about a school reptile club ended up on a reptile website, whose members are now inundating me with emails. While I appreciate the fact that they are reptile enthusiasts and like their pets, they're missing the big picture.

Yes, reptiles can be good pets, in certain situations. I actually like reptiles. I used to own a few, and the first patient I treated in practice was a reptile.

I've also spoken with people whose children have acquired Salmonella from a reptile. I've read numerous papers about kids that died from Salmonella from a reptile, and I think I've yet to meet an infectious diseases physician who doesn't almost immediately launch into reptile-Salmonella stories when they hear what I do.

The fact is, reptile exposure accounts for a very disproportionate number of Salmonella infections in people, and kids bear the brunt of this. That's why the CDC and various other groups say that reptiles shouldn't be in households with young kids (or the elderly, pregnant women or people with compromised immune systems). The same applies for schools and day cares, where young kids are present, parental knowledge of the exposure is often non-existent, and basic infection control practices are spotty, at best.

No one is saying people shouldn't keep reptiles as pets. However, to me, the evidence is clear that certain people shouldn't have reptiles as pets or be in contact with them. Adults can decide to do things that compromise their health. Adults shouldn't make decisions that compromise the health of their kids or kids for whom they are responsible. Ensuring high-risk children stay away from high-risk animals like reptiles is part of that.

African Dwarf Frogs info sheet

In response to Salmonella outbreaks linked to these critters, their popularity as pets for young kids, and efforts to ban them in some areas, we've developed an info sheet regarding African Dwarf Frogs. As with our other info sheets, it discusses the good and bad points of owning these little guys, things to consider when deciding whether to get one, and measures to reduce the risk of infection.

This info sheet, along with many others, can be found on the Worms & Germs Resources - Pets page in the Information Sheets for Pet Owners section.

Ok...maybe we should think about zebras sometimes

The old saying is "when you hear hoof-steps, think horses, not zebras." In a medical context, it means common things occur commonly, so don't start off thinking about wild and bizarre conditions before you've ruled out the usual suspects. Along that line, when I hear "rabies," I think "bats, raccoons, dogs, cats, foxes..." I don't think about... zebras.

Considering there aren't that many zebras in Ontario, and even in places where there are zebras, most people don't have a lot of contact with them, it makes sense that zebras don't typically make the rabies suspect list. But that doesn't mean zebras can't get rabies.

A Letter in Emerging Infectious Diseases (Lankau et al, 2012) describes one such unusual scenario. In January of 2011, an orphaned zebra foal was taken in by a safari lodge (that's probably not too unusual of an occurrence), and not surprisingly, tourists were allowed to handle and feed the foal. Unfortunately, the foal was bitten by a dog at the end of July. The dog was suspected of being rabid but it doesn't seem like any changes were made to how the baby zebra was handed. Unfortunately, the foal died at the end of August and rabies was confirmed. Lodge staff tried to contact people who had visited during the July-August time period, mainly through emails to travel-booking agents who (it was hoped) forwarded the information to travelers.

Several US travelers contacted CDC after getting the email and their risk of rabies exposure was investigated.

  • CDC obtained names of 243 travelers who were at the lodge, 136 of whom were from the US.
  • They worked with the assumption that the outside window for rabies virus shedding by the zebra was a 14 day period leading up to its death. Seventy-seven (57%) of the US visitors had been there during that period.
  • Twenty-eight of those visitors had already started post-exposure treatment for rabies. None of those individuals had high-risk exposures, 2 had moderate-risk exposure while the rest had low or no-risk exposures, so treatment would not have been recommended for most of them. That's probably because the information went from the lodge to travel agents to travelers, and then to the peoples' general physicians (who are generally less well versed in rabies exposure issues) rather than through public health.
  • The cost of rabies post-exposure treatment is at least $4000/person in the US (although I know of cases where the cost was much higher), so at least $100 000 was wasted, in addition to stress and other factors.

Some take home messages

  • People need to think about animal contacts when on vacation. Travelers that go to rabies-endemic areas need to pay particular attention to avoid high-risk contact with animals.
  • Facilities that allow animal contact need to protect the public. Rabies vaccination of this foal might have prevented its infection and the subsequent human exposures.
  • If an animal has been attacked by a rabid animal, don't let people come into contact with it!
  • Rabies exposure is a medical urgency, not an emergency. There's time to make sure things get done right, and public health personnel should be involved in discussions of exposure and treatment.

Biohazardous bandicoots? Playground Salmonella outbreak in Australia

The latest edition of Emerging Infectious Diseases has an article describing a Salmonella outbreak in New South Wales, Australia, that was linked to playground sand (Staff et al, 2012).

The outbreak stretched over a long period of time, from 2007-2009, and involved a strain of Salmonella called Salmonella Java. During the course of the investigation, 75 people with S. Java infection were identified, although there were probably many more infected since diagnosed cases are usually the minority of the true total. 

Individuals affected ranged in age from 1 month to 60 years, but the median age was only 2 years, which means the majority were very young children. The investigation started to focus on playgrounds and ultimately 207 sand samples were collected from 39 locations. Thirty-five isolates of S. Java were found, all from 6 playgrounds. These playgrounds had all received sand from the same depot over the preceding year, but Salmonella wasn't found in samples from the depot.

To try to find a source, they started testing critters living in the area of parks, and found S. Java in 34 of 261 animals, mainly from long-nosed bandicoots (a marsupial indigenous to Australia).

It's possible that this Salmonella strain is widely present in bandicoots (and other critters) in the area. I don't know their defecation habits, but if they have a preference for pooping in sandboxes (like cats do), they could be contaminating play areas. The other possibility is that the sand was contaminated from some other source and the bandicoots were infected from the sand just like the people. There's not really any easy way to figure that out.

Sandboxes have been associated with various disease outbreaks, but the overall risk is low and it's certainly not a reason to keep kids away from them. Some things that can be done to reduce the risk of potential disease transmission from things in the sand include:

  • Supervising kids to prevent them from sticking things in their mouths.
  • Making sure they don't eat or drink in the sandbox/playground.
  • Making sure they wash their hands after playing in the sand.
  • Covering the sandbox whenever it's feasible (not always an option but good if it can be done) to help prevent animals from defecating in the sand.

More information about sandboxes and potential disease risks can be found on the Worms & Germs Resources - Pets page.

Image: Long-nosed bandicoot from Eastern Australia (Perameles nasuta)(click image for source)

Yes, dogs can get salmonellosis

Let me say it again... yes, dogs can get salmonellosis.

...and in French, oui, les chiens peuvent devenir malades de salmonellose (hope that's close)

...and in Swahili, ndiyo, mbwa anaweza kuwa na wagonjwa salmonellosis (thank Google Translate for that one).

What prompted my recurrent 'yes dogs can get Salmonella rant'? Another fluff piece on feeding dogs raw meat diets, this time in the Globe and Mail (a national paper in Canada).

The "dogs can get Salmonella" rant doesn't actually stem from the newspaper, since the article didn't even bother to get into potential infectious disease or nutritional deficiency concerns with these diets (in-depth reporting it was not). Rather, the rant is in response to comments on the paper's website that include the typical garbage that dogs are not susceptible to Salmonella because of their short and acidic intestinal tract. It's a fallacy that's widely distributed on the internet on raw pet food sites, and it's wrong (although ironically enough, many of these same sites also talk about how dogs get sick from Salmonella from commercial foods).

To set the record straight:

  • Dogs can get Salmonella.
  • Most often they don't get very sick, but sometimes they die.
  • Ingesting Salmonella from food or other environmental exposures is the source.
  • The more Salmonella a dog eats, the greater the risk of disease.
  • Raw meat is often contaminated with Salmonella.

Now that I've gotten that off my chest, I'll get back to the article. It's written by someone who feeds her dog raw meat. I have no major problems with that for the average dog and average person. It increases the risk of salmonellosis in the dog and in the family (and potentially anyone or anything in contact with the dog or its poop), but the risk of infection for your average, healthy dog and person is relatively low. It's a bigger issue when there are high risk people or animals in the house, and human and pet infections from feeding raw meat certainly do occur.

I'd rather people not feed raw (or at least make sure they feed high pressure pasteurized raw meat) but I'm a realist and I realize some people are going to do it anyway.  I therefore focus on trying to educate people about situations when they really shouldn't feed raw meat (e.g. high risk dog or person in the household, young growing animals) and what to do to decrease the risk of transmission of Salmonella. More information of this kind is available on the info sheet that can be found on the Worms & Germs Resources - Pets page).

Anyway, back to the article (I really mean it this time). The article includes some interesting information, particularly the very high cost of feeding a raw diet compared to commercial dry or canned foods. However, it also contains some of the same drivel that's found in most of these articles. For example:

"'Dogs don’t have microwaves or grocery stores in the wild,' she says with a laugh, adding that she believes a dog that eats raw will lead a longer, healthier life than one fed traditional dog food."

  • They also don't necessarily live long, happy and healthy lives in the wild. Today's domestic dog is long removed from the mystical wild dog. My dog Meg wouldn't make it very far in the wild, unless there are dog food trees somewhere that I don't know about.

"'On a kibble diet, her dogs were 'overweight, with no energy - scratching all the time from all the allergies,' she says. 'These were our fat, miserable, lethargic dogs.'"

  • Less food, more exercise and good veterinary care could probably have taken care of that too.

As I said above, people are free to make their own choices, but they should get informed, and they need to go beyond raw food company websites and support groups. They need to think about potential benefits, potential risks, cost, hassle and other factors to determine if it's right for them and their dog. Getting real information and critically assessing the information that's out there are critical steps.

"Lamb open house" became "Q-fever open house"

Q-fever, a serious disease caused by the bacterium Coxiella burnetii, is an important concern at petting zoos because small ruminants (sheep and goats) are commonly present at these events and they are the major source of this pathogen. The risk is greatest around adult animal at the time of birthing, and around the new lambs and kids (baby goats), because this is when large numbers of highly infectious Coxiella can be shed. That’s one of the reasons why pregnant small ruminants shouldn’t be part of any petting zoo, but unfortunately this particular recommendation is widely disregarded.

Other than petting zoos, the general public can also have contact with small ruminants through various other routes. An outbreak of Q-fever in the Netherlands (a country with serious Q-fever problems) was reported in association with one of these atypical events, namely "lamb viewing days" on a farm (Whelan et al, Epi Infect 2012).

This farm was open to the public every year during lambing season, and attracted about 12000 visitors from the area annually. Visitors could watch lambs being born (if the timing was right) and interact with young lambs. After finding a cluster of Q-fever cases in the region, an investigation ensued, which compared people who were diagnosed with Q-fever in the region to a group of people without Q-fever. Here are some of the highlights:

  • 21% of people with Q-fever reported visiting the farm compared to just 1% of controls.
  • When various other factors were controlled in the analysis, having visited the farm meant someone was 43.3 times as likely to have Q-fever compared to someone who didn’t visit the farm.
  • Coxiella burnetii was identified in numerous sheep, as well as from 7 of 8 air samples collected on the farm.  (Coxiella is a very small, hardy organism that can resist drying, and it can therefore often be found in the dust in the air in areas that have a lot of environmental contamination, like pens where goats and sheep give birth.)
  • Specific contacts (e.g. holding a lamb, witnessing a birth) were not identified as risk factors, but the small sample size of people that reported what types of contact they had may have limited the ability to detect a difference.

Visiting farms and having contact with farm animals shouldn’t necessarily be considered a high-risk behaviour. In fact, in some ways it’s a good thing. Greater contact between people and animals and a better understanding of farm animals can be very beneficial. However, we’ve known for a long time that some situations pose an increased and unnecessarily high risk. People organizing farm encounters or petting zoos need to take some basic precautions to reduce the risk to visitors. These are pretty simple and can be done without significantly affecting the visitors' experience. Visitors also need to take some responsibility themselves and follow recommendations, like practicing good hand hygiene and keeping food and drink out of animal areas (just to name a couple). Additionally, the more visitors know about risks and preventive measures, the more they can pressure facilities into doing things right. Public health personnel can work hard to try to improve petting zoos and other events, but nothing will change things quicker than an informed public withholding their money from places that put them at unnecessary risk.


Rabies virus survival

I've had a run on questions about survival of rabies virus outside the body. The topic comes up periodically with respect to touching roadkill or veterinary clinic personnel working with animals that have been attacked by an unknown animal. The case of three people who developed rabies after taking care of a sheep that had been attacked by a rabid animal, probably through contact with saliva from the rabid animal on the sheep's coat coming into contact with broken skin on their hands, shows the potential risk. An important part of assessing the risk is understanding how long the virus lives outside the body.

Some viruses are very hardy and can live for weeks or even years outside the body. Parvovirus and norovirus are classic examples of this type. Some viruses, like HIV, die very quickly in the environment. Part of this relates to whether they are "enveloped" or "non-enveloped" viruses. Enveloped viruses have a coating that is susceptible to damage from environmental effects, disinfectants and other challenges. Damaging this coating kills the virus. Non-enveloped viruses don't have that susceptible coating and that is in part why they are so much hardier.

Fortunately, rabies is an enveloped virus, and it doesn't like being outside of a mammal's body. Data on rabies virus survival are pretty limited, since it's not an easy thing to assess.  To look at rabies virus survival, you have to grow the virus, expose it to different environmental conditions, then see if it's still able to infect a mammal or a tissue culture. We can do this easily with bacteria, but growing viruses is more work, especially a dangerous virus such as rabies virus.

I can only find one study that has looked at rabies virus survival (and I can only read the abstract since the rest of the paper is in Czech). The study (Matouch et al, Vet Med (Praha) 1987) involved testing of rabies virus from the salivary gland of a naturally infected fox. They exposed the virus to different conditions and used two methods to look at the infectivity of the virus.

  • When the virus was spread in a thin layer onto surfaces like glass, metal or leaves, the longest survival was 144 hours at 5 degrees C (that's ~ 41F).
  • At 20C (68F), the virus was infective for 24h on glass and leaves and 48h on metal.
  • At 30C (86F), the virus didn't last long, being inactivated within 1.5h with exposure to sunlight and 20h without sunlight.

So, rabies virus can survive for a while outside the body. Temperature, humidity, sunlight exposure and surface type all probably play important roles, but in any particular situation you can never make a very accurate prediction of the virus's survival beyond "it will survive for a while, but not very long."

From a practical standpoint, it just reinforces some common themes:

  • People should avoid contact with dead or injured animals.
  • Veterinary personnel or pet owners dealing with a pet that has been attacked by another animal should wear gloves, wash their hands and take particular care if they have damaged skin.
  • People who are at higher than normal risk of being exposed to potentially rabies-contaminated surfaces should be vaccinated against rabies.

Image: Schematic diagram of a rabies virus showing the outer viral envelope (source: CDC Public Health Image Library)

"Human suicide parasite" in cats

I love my cats. But sometimes when Bonnie and Clyde are living up to their names, puking up hair balls twice a day, peeing on the guest bed (yes, contrary to popular belief even vets can't stop their own cats from doing this sometimes), caterwauling at 3 AM, or begging for food all afternoon, they do make me c-r-a-z-y crazy - but they're not making me suicidal.

In yet another example of how the media will present study results in the manner that will sell the most newspapers or magazines, rather than the way that helps people interpret the results in a logical manner, comes an article entitled "Is Your Cat Hosting a Human Suicide Parasite?" The article talks about a study recently published in the Archives of General Psychiatry (Pedersen et al. 2012) which looked at a cohort of 45 788 women in Denmark who gave birth between 1992-1995, and found a statistically significant association between self-directed violence (including suicide attempts) in these women and their antibody titre to Toxoplasma gondii at the time of birth.  The risk in seropositive women was 1.53 times greater than the risk in seronegative women.

Toxoplasma gondii is a parasite that is shed in the feces of cats, which are the parasites definitive host.  Most house cats only ever shed significant amounts of the parasite the first time they're exposed to the parasite (typically when they're young).  Depending on where people live and various cultural practices, transmission of the parasite from scooping out litterboxes may actually be relatively uncommon compared to other possible sources including exposure from soil (e.g. working in the garden and then not washing one's hands), eating unwashed vegetables, or eating some types of undercooked meat.

The most glaring limitation of the Pedersen study is that they didn't control for any other factors that may have resulted in the women who committed acts of self-directed violence being more likely to be seropositive for Toxoplasma than others.  For example, women with mental illness may be less likely to practice good hand hygiene (one of the most important factors for reducing the risk of parasite transmission), and therefore more likely to be exposed to Toxoplasma, or there may be other factors about their health or their lifestyle that make them more prone to infection. The point is the authors only found an association in a specific subset of the population (Danish women who had given birth to at least on child).  This does not mean that the relationship is causative - they can't say that Toxoplasma infection makes people more prone to self-directed violence, only that women - in this particular group - who were seropositive for the parasite were also at increased risk for this kind of behaviour.  It's a somewhat subtle but very important difference.  The authors of the study clearly acknowledge the limitations of their work, but the news article does not do quite as good a job of pointing this out, until right at the very end where it does finally get mentioned.

Does Toxoplasma infection cause behavioural changes in rats that may make them more likely to wander into a cat's territory and be eaten?  According to an experimental study it can, and it does make a certain amount of ecological sense that the parasite could have an effect on its intermediate host (the rat) that makes it more likely to be able to continue its life cycle (via being eaten by a cat) by reducing fear in the rat. Could infection of the brain in humans cause subtle behavioural changes?  I can't deny the possibility, but humans are not rats and I would be very wary of extrapolating results from one species to the other. But is this parasite likely to "drive our brains off the highway" as the news article says?  I'm not ready to buy that, certainly not based on this study.  As the authors clearly state in the first line of the paper "Suicide is a tragic multifactorial outcome of mental illness, with complex biopsychosocial underpinning..."  There are so many things that contribute to such an unfortunate outcome that a lot more work is needed before anyone can justifiably blame a "suicide parasite" in cats.

Whether you believe Toxoplasma infection can result in behavioural changes in people or not, there are some very simple steps everyone can take to help decrease the risk of becoming infected with this parasite regardless.  These are particularly important for individuals who are immunosuppressed and women who are pregnant, because it is very well established that toxoplasmosis in these high-risk individuals certainly can have severe repercusions to either the individual or the unborn fetus.  However, it is by no means necessary for such individuals to get rid of their cats if they take these simple precautions:

  • Clean your cat’s litter box every day. The oocysts shed in cat feces usually take about 24 hours to become infective once they’ve been passed, so daily cleaning helps remove them before they reach this stage.
  • Always wash your hands with soap and water after cleaning your cat’s litter box, after working in the garden or in any soil, and after handling raw meat.
  • Keep your cat indoors. Outdoor cats are more likely to be exposed to Toxoplasma and shed oocysts in their stool. 
  • Keep sandboxes covered so outdoor cats don’t contaminate them with stool.
  • Cook all meat, especially pork, lamb, mutton and wild game, to an internal temperature of 67ºC/153ºF or higher.

More information about Toxoplasma can be found on the info sheet on the Worms & Germs Resources page.

Tuberculosis and dogs

When I'm giving talks about zoonotic diseaes to people in the human healthcare field, I sometimes mention tuberculosis (TB) as an example of a serious human disease with poorly defined (but theoretically important) risks of transmission between people and pets. TB is a very important disease of increasing of concern because of its resurgence in many areas and the spread of drug-resistant strains.

We don't know much about TB and pets. There are some older studies that provide conflicting information, suggesting that Mycobacterium tuberculosis, the bacterium that causes TB, can be commonly or rarely isolated from dogs owned by TB patients.

A recent study from South Africa (Parsons et al. Research in Veterinary Science 2012) provides more information. The study involved two main components:

  • For the first component, they examined 100 stray dogs in Cape Town, South Africa, for evidence of TB. The dogs were being euthanized for population control purposes so the researchers were able to do necropsies (post-mortem exams) to look for the bacterium and signs of disease that may not have been outwardly apparent. They isolated the bacterium from 4% of the dogs, with only one of those having any signs of disease. That shows that TB is present in dogs in the area, albeit at a low rate. The fact that 3 of 4 TB-positive dogs had no evidence of disease is both good and bad. It's good for the dog's health that illness doesn't always occur (just like in people), but it also means that apparently healthy dogs can be carrying this concerning bacterium. The risk of transmission from healthy carriers isn't known. It's probably rather low since close and prolonged contact are required to transmit TB between people, and healthy carrier dogs are probably not shedding many TB bacteria through their respiratory tract. Greater concerns are probably present in dogs with TB infection of the lungs who are coughing and spewing TB bacteria into the air.
  • The second component of the study involved testing of 24 dogs living with people with TB. They used two different tests: the TB skin test (a test that's commonly used in people but one that's been typically considered useless in dogs) and an interferon gamma release assay (IGRA)(a test more commonly used now in humans). They concluded (not surprisingly) that the skin test was pretty useless, but their data suggest the IGRA may be a good test for dogs. 50% of dogs in those households had evidence of TB exposure through IGRA, consistent with one older study that indicated transmission of TB from people to pets may be common.

What are the implications of all this?

For the average person and pet, not much. TB transmission requires close and prolonged contact with an infected individual. You don't get it walking down the street behind someone with TB. 

The concern is in situations when people with TB may have contact with pets - the same concern as in situations when people with TB may have contact with other people. The potential for transmission is something to pay attention to in households where there is an infected person, or in populations where there may be high TB rates and common pet contact (e.g. some homeless populations).

Results of this study should be a reminder that when considering who's potentially been exposed to a person with TB and making plans to reduce the risk of transmission, you need to consider all individuals - human and animal - with which the person has contact. Therefore, measures taken by people to avoid transmission of TB to other people should be equally applied to reducing transmission to pets. Pet exposure should always be considered, particularly when dealing with multidrug-resistant (MDR) or extensively drug-resistant (XDR) TB, since such strains are huge concerns in people and we don't want to create canine or feline vectors of these strains. The study results also indicate that pets owned by TB patients may be at increased risk of disease from TB, not just at risk of being infected and harbouring the bug. Therefore, knowing that a pet has had close and prolonged contact with a person with TB is relevant to veterinarians when evaluating sick animals.

African Dwarf frog ban in Markham, Ontario

Markham, Ontario's city council has passed a bylaw prohibiting the keeping of African Dwarf frogs. While in reality more of a ban on the sale of frogs in the city (since I doubt there will be any effort to search for contraband frogs in households), and perhaps of somewhat limited impact because of the availability of the potentially Salmonella-laden critters in neighbouring areas, not to mention the common practice of pet retailers flouting laws like this, it's nonetheless a step that will hopefully reduce the number of these animals in households.

Why the fuss about African Dwarf frogs?

  • Mainly, it's because of the risk of transmission of Salmonella from these frogs to people. Large numbers of Salmonella infections have been linked to these frogs internationally, and the risks are amplified with pets like this that are marketed toward young kids (especially as pets to keep in their bedrooms) and for schools and childcare facilities, because children are one of the highest risk groups for developing salmonellosis.
  • The other important issue is animal welfare, since these frogs are often sold in unsuitable habitats and have a fairly limited lifespan in captivity.

Not surprisingly, the owner of the US company that is one of the main distributors of these animals is unhappy with the decision. It's hard to be sympathetic given the fact that they essentially ignore the risks these animals pose to people, at least in the materials they present to the public. Despite the fact that they are marketing what is considered a high-risk animal as a pet, there's little effort put into providing information about that risk or risk mitigation. Looking at their promotional materials, I can find lots of information about how to care for the aquarium. Yet, none of it mentions Salmonella. There's no statement about keeping young kids away from frogs. There's no mention of washing hands after contact with frogs or their environment, or that aquarium water shouldn't be dumped down bathroom or kitchen sinks... or any other basic, relevant infection control practices. They do have some CDC information on their website if you look around, which is better than nothing, but it needs to be more prominent. Everyone that purchases one of these frogs should get a clear information sheet that explains the risk of Salmonella transmission and how to avoid getting sick. Yes, it puts a bit of a damper on the new pet, but a lot less than being hospitalized.

Back in Markham, it's hard to say whether the ban will have an impact on frog ownership because of the ability to buy frogs a few minutes away in neighbouring municipalities, and the likely lack of any real enforcement effort. However, it's a start and if nothing else, and publicity associated with the ban may help educate people. African Dwarf frogs that are already in households are exempt and can live out their natural (albeit often short) lifespans, but people can't replace them when they are gone.

More information about Salmonella can be found on the Worms & Germs Resources - Pets page. We don't have a dwarf frog info sheet (it's coming) but most of the information on the Reptiles info sheet equally apply to frogs.

Pet travel misinformation

Travel always carries a risk of infectious diseases. More people are paying attention to their health and going to travel clinics to find out about these risks and what preventive measures they can take. They still constitute only a minority of travelers, but it’s an improvement. There aren’t travel clinics for pets, so travelers thinking about pets and infectious diseases need to rely on sources like their regular veterinarians and government websites.

Unfortunately, that doesn’t always result in good information, as shown in a study recently published in Zoonoses and Public Health (Davidson et al 2012). For the study, the authors called veterinary clinics in eight European countries (Austria, Belgium, Finland, France, Germany, Sweden, Switzerland and the UK) and asked them about taking a dog to Norway. They also called clinics in Norway and asked about bringing a dog to the country from an unspecified location in Europe. Calling was done not as a research survey but by a person pretending to be a pet owner.

The study focused on two main pathogens, Echinococcus multilocularis (a tapeworm that is present in some parts of Europe but not others, and one that is both an animal and public health concern) and rabies. Only 9% of clinics provided accurate information about these two problems. Some clinics (58%) referred people to government sites that have good information, but unfortunately 13% of clinics referred people to websites or government agencies that provided incorrect or incomplete information. When information from websites is included, people received correct advice 62% of the time. Not bad but not great.

Among the bad advice that was given (or important information that was not given):

  • Failure to tell people about the requirement for tapeworm treatment after arrival.
  • Incorrect tapeworm treatment information.
  • No mention of rabies titre testing.
  • False information that pets traveling to Norway don’t require tapeworm treatment.

This shouldn’t be taken as indicating that veterinary clinics aren’t competent. Travel medicine certainly isn’t something I was taught in vet school. Most veterinarians (understandably) don’t spend much time reading about problems that only occur in other geographic regions, since there’s enough other new information on which they must stay current. So, they may not have answers at the tip of their tongues when asked a question. Trying to get good information by random phone calls or as an aside during a veterinary appointment might not be the best approach. However, since we have a surprisingly mobile pet population, with pets traveling with owners to many different regions, it’s an important area for veterinarians to think about, from two standpoints:

1)   Counseling people who are traveling: As was the focus here, it’s important for people to know about disease risks and regulatory requirements for places to which they travel. Specific preventive measures (e.g. vaccination, deworming) that are not needed at home may be indicated when traveling.

2)   Diagnosing disease in returning animals: It’s easy to miss travel-associated diseases, and that can lead to bad outcomes. If veterinarians don’t ask whether a pet has traveled, they won’t realize that there might be some other diseases to consider. If they don’t know about disease concerns in other regions or (perhaps more importantly) don’t have ready access to good information about disease risks in other regions (e.g. accurate websites), they might not consider important diseases even if they ask about travel history.

This study highlights a few of the current gaps in the system, involving background knowledge, client communications and variable accuracy of electronic sources. People who are traveling with pets (or acquiring pets from abroad) should have a thorough discussion with their veterinarian (not just a casual call to the veterinary clinic, during which information may come from or through lay staff) about the situation, and they need to do their own homework. It's probably best to make sure the clinic knows that there will be travel questions in advance, so mentioning it at the time of booking the appointment might help.

As the authors of this research state “An accessible, centralized, easy to use website, that is updated by a central regulating agency and applies to all countries, would allow veterinarians to refer pet owners to one site for further information regardless of which country they are travelling from and going to.”

That's the ideal situation. Given the minimal attention that governments pay to pet animals, it's probably going to have to be an government-independent, collaborative venture. We've had some discussions about this in the past and it would be great to do, but the logistics are a bit daunting. Maybe it's time to resurrect those discussions.


Biohazardous baby raccoons

This time of year, it's very common around here to see young raccoons wandering about. It's also still pretty common to hear about people keeping a litter of baby raccoons in their house. I can understand the appeal - they're cute and entertaining. However, in addition to being illegal in many regions, handling young raccoons also poses a risk of exposure to a variety of infectious diseases.

Chief among the infectious disease risks of handling young raccoons is rabies, as a Walker County, Alabama, family found out. Two baby racoons were found in someone's attic, and another two littermates were found a little while later. The person who found them gave two each to two separate people. As is often the case, they were handled by many different individuals before one of the raccoon kits was found to be rabid.  Now more than 20 people are facing post-exposure treatment. It's one of the larger reported exposures from a single rabid raccoon, but it's far from unprecedented.

Beyond the obvious public health concern, this situation demonstrates another possible issue. Rabies is sporadically distributed in some regions, and moving wild animals around leads to the potential for dissemination of rabies, as well as other infectious diseases. Raccoon rabies is present in the area where the baby raccoons were found, but has not been found in Walker County, even though it's not far away. If the rabid raccoon had escaped (or was released), it could have potentially spread rabies into an area where it's currently not well established, thereby increasing the risk of exposure to everyone (animals and people) in the county.

As mentioned above, it's also illegal to harbour wildlife in many regions if you are not a licensed rehabilitation facility. While getting fined seems to be uncommon, four people in this incident have been charged with unlawful possession of a protected animal. Just one more reason not to do this.

While baby raccoons may have some appeal, as Alabama's state veterinarian Dee Jones says, "...people just need to stay away from them."

More non-bite-associated rabies

The other day, I wrote about a case of rabies not associated with a bite. An recent article in the Journal of Clinical Virology (Simani et al 2012) describes six other such cases from Iran.

Case 1: A veterinary technician was infected through contact of broken skin with saliva. The man had scratched skin on his hand, which he put in the mouth of a rabid cow during a procedure. This situation brings to mind several important points:

  • All veterinary personnel in rabies endemic areas should be vaccinated against rabies. I don't know about rabies vaccine supply issues in Iran, and that might be a limiting factor, but there are still too many unprotected veterinary personnel in most countries.
  • This person seemed to have known that rabies was suspected in the cow, but apparently didn't consider this kind of contact to constitute exposure, so he didn't seek treatment. Once he started to get sick, he actually suspected rabies well before his physicians, so he obviously was well informed about the disease.
  • There is a need to consider rabies when evaluating any animal, to use proper barriers (e.g. gloves) when handling rabies suspects, to test for rabies when there is any chance an animal has died of the disease, and to get post-exposure treatment if there has been a potential exposure to the virus. These steps aren't always straightforward, especially since signs of rabies in cattle can be quite variable.

Cases 2-4: There were three members of the same family tending a herd of sheep and one of the sheep was attacked by a rabid wolf. The three individuals were believed to have been exposed while tending to the sheep, since their hands were scratched in the process and it was thought that rabies virus-laden saliva still on the sheep's wounds got into those scratches.

  • This one surprises me. It's not a route of rabies exposure we typically consider, since rabies virus is quite labile (i.e. rabies virus does not survive long once it's exposed to the environment, even on the outside surface of a wound). I guess it makes sense if the three individuals were scratched and exposed to saliva right after the attack. I don't think this indicates broad risk to people who take care of animals that have been attacked, but it's something to think about when dealing with an animal that has just been attacked. It's another reason that we should be wearing gloves when handing open wounds (typically, gloves are recommended to protect the individual with the wound, but it goes both ways) and take care to perform proper hand hygiene. However, both of these are hard to do while tending a flock of sheep in rural Iran.

Case 5-6: These individuals were infected through corneal transplants from the same donor. The donor was reported to have died from "food poisoning," although undiagnosed rabies must have been the true cause (unless you have the very unlikely situation that the person was infected but coincidentally died of food poisoning just before signs of rabies developed).

  • Corneal transplants have been associated with transmission of various diseases, and transplant-associated infections of many kinds have caused many deaths. That's why there are strict protocols for screening donors, both in terms of what they died of and what testing is required. I'm surprised they'd use tissues from someone who died with an inexact diagnosis such as "food poisoning," especially since that can have an infectious cause.

Overall, these non-bite associated cases account for a small minority of human rabies cases that occur every year, but unusual routes of exposure need to be considered in any case.


Israel issues rabies travel warning for tourists to India

Israel's Health Ministry is recommending rabies vaccination for people traveling to India.This seems to be mainly in response to the recent high-profile case of an English woman who died of rabies acquired from a dog in India. While it was high-profile, that certainly wasn't the only travel-associated rabies infection in the past year.  Rabies exposure is a serious concern for people who might encounter dogs (intentionally or accidentally) while traveling in countries with endemic canine rabies. The news report states that rabies vaccine is available at clinics in Israel for would-be travelers, however it doesn't say whether the cost of vaccination is covered by the government. Human rabies vaccination is quite expensive, which may be a limiting factor when it comes to convincing travelers to get vaccinated, unless the government foots some or all of the cost.

Raising awareness of the problem with rabies in some developing countries is good. Most people don't really think about travel-associated disease (beyond the ubiquitous diarrhea that comes with travel to some areas), particularly something like rabies. In addition to focusing on vaccination, however, it would be even better to see a broader initiative to remind people to avoid contact with stray dogs (and other animals) and to make sure they get proper medical care after potential rabies exposure. Also, while India is certainly a hotbed of canine rabies, it's important to remember that there are many other countries where dog rabies is a major problem, and similar measures need to be taken for travel to these places too.

A surprisingly large number of people get sick and die every year from diseases acquired during travel. Travelers need to be aware of disease risks in areas they visit, know what preventive measures they should take and how to get proper medical care in any region they visit. While thinking about this might put a damper on vacation planning, it's worth the effort. When it comes to rabies, unless you know that a region is officially (and truly) rabies-free, assume that any encounter with a wild mammal, especially a stray dog, could be a source of rabies exposure. You don't want to travel in a bubble and stick to sterile locales, but you also don't want to come down with a fatal disease when some basic precautions could have prevented it.

Rabies isn't always from bites

While rabies is classically transmitted from animals to people by bites, any situation that allows saliva from an infected animal to get past the body's protective skin barrier can result in infection. Graeme Anderson, a 29-year-old South African canoeist, recently died after contracting rabies from a sick dog for which he was caring. There was no history of a bite, but the dog had licked damaged skin on the man's hands, allowing the virus to enter the body.

Any contact with animals showing signs consistent with rabies needs to be investigated. Licks over damaged skin (or mucous membranes like the mouth) are classified by the World Health Organization as having the same level ("severe") risk of rabies exposure as bites, and post-exposure prophylaxis is indicated. Bites are the main source of rabies transmission, but not the only source, the fact of which situations like this remind us.

Plague from pet cat

Plague cases tend to get a lot of press. The fact that this disease killed a large percentage of the human population in a few different pandemics (albeit centuries ago for the most part) probably plays a role in that. Despite the impression by some that it's just a historical disease, plague is alive and well in certain parts of the world, including parts of the US, and infects a few thousand people every year.

Plague is caused by the bacterium Yersinia pestis, which lives in various wild rodents and is circulated by fleas. Transmission to people historically has been via fleas that jump from rats to people. However, plague isn't just a rat-human disease, as it can infect other animal species. Among domestic animals, cats seem to be most commonly infected, probably because of exposure while hunting.

The problem with plague and pets has been shown once again a case of plague in an Oregon man who likely picked up the infection from his cat. (Oregon is outside of the main range of plague in the US, where the disease is most common in the southwest). The man was bitten by the cat while retrieving a dried, decayed mouse carcass from its mouth. He developed septicemic plague (infection of the bloodstream), and then pneumonic plague (infection of the lungs), which is the worst case scenario. At last report, he was in critical condition and the prognosis for survival is probably guarded.

There's no mention of the cat's health. Most cases of cat-human plague occur in people taking care of sick cats (especially veterinarians). If a person is infected by a cat bite, I would expect the cat to have been sick with plague, although transmission has been reported from apparently healthy cats. Some other possible routes may need to be considered. If the cat in this case was exposed to plague, then plague's obviously in wildlife in the area, so you have to consider that the infected man might have been bitten by an infected flea (that came directly from an infected wild animal or that the cat tracked in) or from direct contact with wildlife, especially if his house had a rodent infestation.

Regardless, it's important for people in plague-endemic (and neighbouring) areas to be aware of plague and take measures to reduce the risk of exposure for themselves and their pets, such as:

  • Avoid contact with wild rodents (and wildlife in general, since larger wildlife species can also be infected).
  • Keep cats inside.
  • Don't let pets with outdoor access roam unobserved, where they might be more likely to encounter wildlife.
  • Have a flea control program for pets.
  • Address any animal/household flea infestations promptly and aggressively.
  • Make sure sick pets get prompt and appropriate medical attention, since diagnosing plague in a pet may be a critical factor in prompt treatment of people infected by the pet. Plague is an example of a disease for which diagnosing infection in the pet might save the owner's life.

Elementary school reptile club: good, bad or ugly

Today's Toronto Star has an article about a reptile club in a Toronto Elementary School. Teacher Jim Karkavitsas runs a session every day that teaches students about a range of reptiles. His menagerie has expanded from one snake five years ago to more than 40 different species in his classroom. Some are loaned out to other classroom's on request and two lizards now make their home in the school's main office.

The good

  • Learning about, and interacting with, animals can be very important for kids, especially those who don't get exposure to animals at home and outside of school. It can teach responsibility and empathy, and be the springboard for a range of educational discussions.
  • The animals are kept in a room adjoining the classroom, so they are relatively contained and all students aren't forced to be around them (since some kids might be afraid of them). Housing the reptiles in a different room also means students presumably aren't eating in the same room in which the reptiles are housed.
  • Kids use hand sanitizer before and after contact with reptiles. This is a very important preventive measure for the problems outlined below, but it's not 100% protective (or usually performed all the time or done properly).
  • Mr. Karkavitsas takes the animals home during the summer. A problem with some classroom pets is people don't assume ownership for them to take care of them properly when school's not in session. Similarly, the school's parent council provides $5000 to cover the cost of keeping the reptiles. Hopefully, that also means that veterinary care would be provided if something happens, which can be a problem in many cases when classroom pets need care but no one has a mandate to arrange or pay for it.

The bad and the ugly

  • Salmonella. That's the big one. Reptiles are classic sources of Salmonella. You can almost guarantee that more than one of these reptiles are shedding the bacterium. If a reptile is shedding Salmonella in its feces, it will also likely have the bacterium on its skin, in its cage and in any areas where it roams. It also means that anyone touching it (or its environment, or contaminated areas) can pick up Salmonella on their hands, with subsequent transfer into the mouth. This is a high-risk situation since reptiles are a major source of salmonellosis, especially in kids. Reptile-associated salmonellosis does occur in classroooms.
  • Mr. Karkavitsas buys frozen rats to feed the snakes. Frozen rats can also be contaminated with Salmonella, and frozen rats have caused salmonellosis in kids in a school (which was also brought home and spread other family members). There's also been a large (and likely ongoing) international salmonellosis outbreak associated with frozen rodents. 
  • Standard recommendations are that children less than five years of age (along with pregnant women, elderly individuals and people with compromised immune systems) not have contact with reptiles. This is a grade 5-6 classroom, so the students would be older than this, but I wouldn't be surprised if younger kids in the school also have contact with the reptiles. Additionally, the immunocompromised group is an issue, since many people have compromised immune systems due to various diseases or treatments. Teachers may not know about all of these and parents may not realize that their high-risk child is having contact with high-risk animals in school. When you can't be sure that high-risk people won't have direct or indirect contact, that's a problem.

The sentiment is great and I applaud the teacher's efforts to engage kids and teach them about animals, However, it's a cost/benefit situation and the potential costs (which may be extreme) outweigh the benefits (significant as they may be). While reptiles can be great pets in certain situations, they're not meant for schools where there are lots of kids, challenges with supervision, difficulty implementing good infection control practices and potentially individuals at high risk for infection.

Diamond pet food lawsuit

It's not the first, and it's a safe bet it's not the last, but a lawsuit has been filed against Diamond Pet Foods in response to a case of salmonellosis in a New Jersey infant. The lawsuit claims (probably correctly) that the infant acquired Salmonella from contaminated dog food that was in the household. The infant was hospitalized for three days but recovered. The lawsuit, one of at least eight that have been filed, claims negligence and fraudulent representation, and is seeking over $75000 in compensation.

In reality, it's hard to consider a company liable simply for Salmonella contamination. Various practices can be used to reduce the risk and to detect contamination when it occurs, but these will never be 100% effective. Standard hygiene practices that are recommended to reduce the risk of exposing people (especially high risk people) to any pathogens that might be found in pet food must therefore always be used. It's hard to say what degree of responsibility needs to be placed on consumers versus companies, since companies need to do their best and people need to use common sense.

From my completely non-legal standpoint, the issues of negligence and liability come in when:

  • A company has inadequate facilities that do not conform to standard requirements to reduce the risk of contamination (e.g. duct tape and cardboard in food processing equipment, as per the FDA report).
  • A company has an inadequate quality control program.
  • A company knows there's a problem and doesn't take prompt and appropriate action to correct it.

Based on what information has been released (including the relatively damning FDA report that cited lack of microbial analysis of certain ingredients, lack of hand hygiene facilities and the use of duct tape, cardboard and other non-cleanable materials in the plant) combined with some questionable communications strategies, it certainly seems like a case can be made here.

Dr. Seuss for the infectious disease crowd?

From one of my grad students who, contrary to his claim, maybe does spend too much time on YouTube.


More Queensland Hendra virus cases

While I guess it's getting beyond the point where Hendra virus infections in horses in Queensland, Australia are considered "news," it's still a highly concerning situation. Infections caused by this fruit bat-associated virus continue to occur in the region and there's no sign that this problem is going to go away any time soon.

In the latest report, two horses from a farm where a horse recently died of Hendra tested positive for the virus. In another location, a dog is being re-tested after a weak positive test. This situation brings back memories of the debate that occurred last year after a healthy dog that tested positive was euthanized as a precautionary measure, despite no information about whether the dog could actually be a source of infection.

Hendra is resulting in profound changes in the horse industry in Queensland. Beyond being a major problem in horses, this virus can be passed from horses to people, resulting is tremendous concerns amongst horse owners and veterinarians. Many veterinarians are refusing to work with horses because of the risk and I assume that some people are selling horses for similar reasons.

Infection control practices can presumably reduce the risk of transmission of Hendra virus between horses and from horses to people, but there's no way to completely eliminate the risk. Fruit bat control strategies get discussed, ranging from removal of fruit trees from horse pasture to reduce fruit bat exposure (logical) to fruit bat culls (highly unlikely to have any longterm effect). At a minimum areas under fruit trees should be fenced off from horses, and it has also been recommended to keep water troughs covered to prevent contamination with excrement from the flying foxes. Ultimately, everyone's holding out for an effective vaccine, which has yet to appear, but work on the vaccine is well underway and the hope is that a commercial vaccine could be released as early as next year.

(click image for source)

And so it continues...Diamond Pet Food Recall

The title from Food Safety News' latest report says it all: "After eight expansions, how big is the Diamond Pet Foods Recall?" It's disturbing that we can't answer that question, considering the contamination stretches back to 2011 and now it's apparent that there are problems with another one of their plants.

Accordingly to Food Safety News, the FDA has indicated Salmonella contamination has been found in Diamond's Meta, Missouri plant, in addition to the South Carolina plant that's been at the heart of the recall. However, the Missouri Salmonella contamination is from Salmonella Liverpool, a different strain from the South Carolina plant where Salmonella Infantis has been involved. So, there's no evidence that the two recalls are linked, although you have to wonder whether deficiencies that were found by the FDA at the South Carolina plant might also be present at other plants, thus creating an increased risk of Salmonella contamination.

Anecdotal information about sick animals and people associated with this recall abounds, in stark contrast to information from Diamond Pet Foods. It would be nice to have some clear communication from the company about this outbreak, and some information about what they are doing to control it and prevent it from happening again. The continued expansion of the recall and contamination is concerning, and in the absence of clear communication from the company it's hard to have confidence in the safety of any more of their products.

UK rabies update

A 50-year-old UK woman, the first of two recent travel-associated rabies cases in the UK, has unfortunately but not surprisingly succumbed to the infection.

The woman was bitten by a puppy while traveling in India. Given the widespread nature of rabies in dogs in India and the large number of human rabies deaths associated with canine rabies there, this was a high-risk exposure. I still haven't seen any information about whether she sought medical care in India or not. Too often, people don't bother to go to a doctor after being bitten, especially if the bite appears minor - but even a minor bite can transmit rabies. Furthermore, people don't always get the care they need, since rabies treatment is astoundingly not always offered after dog bites in India, and rabies vaccine and antibody may sometimes be in short supply.

Whatever happened in India, the woman was reportedly turned away twice by doctors back home at Darent Valley Hospital in Dartford, Kent. It's not clear why, and an investigation is underway, but it's not necessarily surprising since signs of rabies can be very vague at first. Initial signs could mimic a range of minor illnesses, and if the doctors didn't know that the woman was bitten by a dog in India, rabies presumably (and reasonably) wouldn't be considered, especially since it's not present in the UK.

In what is hopefully a case of misquoting or misinterpretation, Dr. Ron Behrens of the London School of Hygiene and Tropical Medicine is quoted as saying that there is a 24 hour window after a bite when antibody treatment can prevent the virus from entering the nervous system. In reality, it's not that quick and the incubation period can be very long in some cases. Post-exposure treatment can be highly effective even if it's given well after exposure, as long as it's before signs of rabies occur. Prompt treatment is always best.

Tags: , ,

Travel-associated rabies in the UK

Just as I was getting ready to write about a recent case of travel-associated rabies in the UK, a second suspected case has been identified in the UK. They're not linked and it's just a co-incidence that the two have been identified in a short period of time, but they highlight the potential risks of rabies during travel.

The first report is about a confirmed case of rabies in a woman in her 50s who was bitten by a dog in India. At last report, she was being treated in hospital, although the prognosis is presumably extremely poor if treatment was started after the onset of disease. Public health officials have investigated people who were in contact with the woman to determine who needs post-exposure treatment.

There's not much information in the most recent report, beyond the fact that a suspected rabies case was detected in a person in Leeds following a dog bite that occurred abroad. There's no information yet (at least that I've seen) about where the bite occurred, the condition of the patient or whether the person received medical care after the bite.

While travel-associated rabies is very rare, it's almost always fatal. It's almost 100% preventable too, and any cases that occur typically reflect a breakdown in knowledge, communication or medical care.

Knowledge/Communication: People need to know about rabies, and be aware that any bite from a mammal in a rabies-endemic area should be investigated as a potential rabies exposure. They need to know about the risk of rabies in areas they visit, and avoid situations that might lead to a bite. Travelers and non-travelers alike need to know to go to a physician after any bite and to ensure that rabies exposure is duly considered. Individuals traveling abroad need to know how to access the healthcare system where they are, communicate the problem and act as their own advocate to make sure things are taken care of properly.

Medical Care: With proper post-exposure treatment, rabies is almost 100% preventable. The problem is getting the treatment in a timely manner. Knowing to go to a doctor is one issue. Getting proper care once there is another, particularly in some countries where access to rabies vaccine may be limited or where the healthcare system is poor. Rabies exposure is a medical urgency, not an emergency (although the more severe the bite and the closer to the head, the more important it is for a prompt response). If someone has had a potential rabies exposure and they aren't getting proper care, they need to get home (or somewhere else) where they can obtain the appropriate treatment. That doesn't mean panicking and getting on the first flight out of the country, but it also doesn't mean waiting until your planned vacation is over. It means getting home in good time, while not freaking out if it takes a day or two.

Diamond Pet Food outbreak continues. Diamond Pet Food Communications..not so much.

The large recall and salmonellosis outbreak associated with a variety of foods produced by Diamond Pet Foods continues to expand, in terms of species involved, the number of cases, the number of recalled products and geographic scope. The only thing that's not expanding in information from the company.

Reports (of varying strength) of Salmonella cases in dogs have been cropping up, but it's not just a US problem or a problem only involving people and dogs anymore. Two cats from a Montreal animal shelter have apparently died. At least two people in Canada have also been infected, one each from Quebec and Nova Scotia.

As with many outbreaks, the depth of information is variable when it comes to potential cases and it's hard to say if everything that's reported in the press is real. Just because an animal has been eating recalled food and gets sick, that doesn't mean that the food caused the disease. Testing is required to make the diagnosis of salmonellosis and confirm the involvement of the outbreak strain. However, enough reports are coming in to be fairly convincing that this is a very large, wide reaching outbreak involving people, dogs and cats, and multiple countries.

Communication is critical when managing an outbreak. It can let companies show they are doing everything that's necessary (and more), demonstrate their commitment to correcting the problem, show how they are helping people with affected animals, and provide confidence that once the problem was identified, it was (or will be) rectified and the product can be considered safe. Some companies shine during outbreaks. Some don't.

Here, communications don't seem to be ideal.

  • Another product was added to the recall list, without too much publicity.
  • We know recalled food is in the US, Canada and Puerto Rico (with sick people and animals in at least Canada and the US), but has contaminated food gone any further? Importantly, has information about the potential risk gone anywhere the food might have gone, since the FDA's mandate ends at the US border. eFoodAlert reports some concerning information in that regard. The Taste of the Wild website lists over 50 countries where the food is available and a correspondent for the site apparently bought a recalled product in Ireland. What is actually being done to correct problems that lead to the outbreak is also unclear.
  • I also haven't seen any press releases from the company addressing the numerous FDA violations that were identified in the outbreak investigation.

Outbreaks happen. Sometimes they're not preventable. Sometimes mistakes happen. That's an unfortunate aspect of life. However, how a company deals with those issues, both in terms of correcting the problem and restoring consumer confidence, is critical, and seems to be lacking here.

A good adage when it comes to outbreak communications is "never announce a problem without announcing a solution." That doesn't mean hide outbreak information (something that is done too often). Rather, it means don't just say that you have a problem. Be clear about your problem and at the same time be clear about what you are doing to fix it. Hopefully, Diamond Pet Foods has an aggressive ongoing response to correct these problems, and that's what consumers need to know about. In the absence of any clear information, we're left wondering whether they are doing anything at all.

Diamond Pet Food recall questions

I'm getting a lot of questions now about canine aspects of this recall, so I've addressed my take on some of the important issues below.

Can Salmonella cause disease in dogs?

Absolutely. The common myth about dogs being immune to Salmonella (mainly found on raw food sites) is just that: a myth. Dogs can and do get Salmonella infections, and it can make them sick.

Are dogs getting sick because of the recalled food?

I don't know but I suspect they are. There's no reason to think that the strain of Salmonella involved here would infect people but not dogs. The reason that there are reports of human but not canine cases could simply be because there is a formal surveillance and reporting system for humans but not dogs. Also, testing is not commonly performed on dogs with diarrhea, so large numbers of cases could go unidentified.

What would a sick dog look like?

The most common presentation of salmonellosis in dogs is diarrhea. Vomiting, lethargy and lack of appetite may also be present. Diarrhea can range from mild to severe and bloody. Chronic diarrhea can also develop but is less common. Other types of infections such as bloodstream infections can occur, with or without diarrhea, but these are pretty rare.

How do I know if my dog has salmonellosis?

The only was to know is to try to detect the Salmonella bacterium. This usually involves testing of stool samples. Culture is the standard and preferred approach, and is best done by a lab experienced with Salmonella testing and one where selective culture methods will be used. PCR, a type of molecular test, can also be used to detect Salmonella DNA. The quality of these tests (and the labs that offer them) is quite variable, but some of these tests are quite good. The downside is that all you find out with PCR testing is whether Salmonella is present or not. With culture, the bacterium can be tested further to see if it is the outbreak strain, and it can be tested for its susceptibility to antibiotics in the uncommon event that antibiotic treatment is needed.

My dog is healthy but has been fed recalled food. Should he/she be tested?

I don't recommend that. I only want to do a diagnostic test if I have a clear plan regarding how to use the results, which wouldn't be the case is a situation like this. If the dog was positive for Salmonella, I wouldn't do anything special except remind you to avoid contact with its poop (which you should be doing anyway). We don't treat Salmonella carriers - dogs that are healthy and shedding Salmonella will eliminate it on their own, usually within a couple weeks. A negative result also doesn't guarantee that the dog is truly negative. Usually we want multiple negative cultures to rule out Salmonella since it can be shed intermittently and can be hard to detect.

My dog is healthy but has been fed recalled food. Should he/she be treated with antibiotics?

NO. That's the last thing I want to do. Antibiotics are not very effective (or effective at all) at eliminating Salmonella that's living in the intestinal tract. A healthy animal shedding Salmonella is an indication that the body is handling it. It doesn't mean that disease won't occur, but one critical aspect for preventing intestinal infections is the protective effect of the gut microbiota - the trillions of bacteria that are in the gut helping suppress "bad" bugs like Salmonella. My concern with prophylactic treatment is that we might make things worse by suppressing this protective bacterial population and letting Salmonella overgrow in a situation where it otherwise would not have been an issue.

Latest round of rabies news

ProMed's latest accumulation of rabies reports has the typical mix of domestic animal and wildlife rabies cases, and some recurring themes.

Fox / dog / human, North Carolina

In this case, a rabid fox had a "direct encounter" with several people, then it was killed by a dog. Three people have started post-exposure treatment.

  • The article states that the dog was vaccinated against rabies, which is good to hear. However, it goes on to say that exposed pets need to be euthanized or have a 6 month quarantine. In reality, standard guidelines are that unvaccinated pets are treated like this while vaccinated pets undergo a less rigourous 45 day observation at home. Hopefully the discrepancy is simply due to inaccurate reporting and not misinterpretation of guidelines by local officials.

Cat / human, Maryland

A rabid stray cat scratched five people, who have been urged to undergo post-exposure treatment. Officials are calling for anyone who potentially had contact with this cat go to an emergency room.

  • However, odds are if someone goes to an emergency room and says they might have had contact with this cat, they're just going to sit around until someone tells them they don't know what needs to be done, or to go home and deal with someone else. Rabies exposure is a medical urgency, not an emergency. People should take a little extra time to work with their physician and/or public health rather than go to the emergency room.
  • People who may have had contact with the cat need a proper assessment to determine if they were potentially exposed to rabies, since just being around the cat or having casual contact is not a risk. Scratches are a bit controversial since they are low risk for rabies transmission (unless the scratches become contaminated with saliva from the animal), and there are conflicting guidelines regarding what to do for a person who is scratched.
  • This is also a good reminder to stay away from stray cats.

Fox / human, Pennsylvania

In this report, authorities are trying to find a person that cradled an injured fox in a blanket. The fox was subsequently identified as rabid and they need to determine whether the person was potentially exposed to the virus.

  • Again, another reminder to stay away from wildlife, and if there is contact with wildlife, make sure rabies exposure is considered.

Bat / human, Indiana

A student was bitten by a rabid bat while he slept in an Indiana University dorm room. He woke up after being bitten (good thing, since he probably wouldn't have noticed otherwise due to the often tiny marks left by a bat bite).  He is now receiving post-exposure treatment.

Rabies isn't going away, at least any time soon. People need to be aware of the risks in rabies-endemic areas, take care around wildlife and vaccinate their pets.

Photo credit: Rob Lee (click for source)

Diamond Pet Foods Salmonella outbreak

After starting off like a simple recall of potentially Salmonella-contaminated dry pet food, the Diamond Pet Food problem has now expanded into a multistate outbreak of salmonellosis in humans linked to exposure to the contaminated pet food. At last count, there were 14 affected people from 9 US states, including 5 who required hospitalization. These numbers could increase since so far they only include people who got sick up to April 1 (because it takes time for Salmonella to be grown in the lab, sent to CDC for testing and the result investigated, later cases may not have been reported yet).

This outbreak involves Salmonella Infantis, a strain that is uncommonly identified in people. Finding an increased number of infections caused by an unusual strain makes it easier to identify an outbreak, as was presumably the case here. This strain has also been isolated from various types of pet food that were produced at the Diamond Pet Foods' South Carolina plant. Despite the name, this strain of Salmonella is not more likely to infect infants, and people ranging from less than 1 year to 82 years of age have been infected.

Details about the types of contact people had with the pet food are limited. 70% of infected people reported having contact with a dog the week before getting sick. How the other 30% could have been exposed is unclear. Sometimes peoples' recall is poor, especially if they had transient contact with a pet. Individuals could have been exposed from environmental contamination when visiting a household where contaminated pet food was fed, without having direct contact with a pet. It's also possible some cases are not directly related to the outbreak and co-incidentally were exposed to the same strain from some other source.

Since we see periodic outbreaks associated with dry pet food, does that mean that other types of pet food are safer? Not really. Canned food is ultimately the safest because of the heat processing, but it's not practical for all animals.

Typically, after a report like this, I get a barrage of emails from people saying "See... we don't have large outbreaks from raw food diets so they are safer." Unfortunately, that's not the case. High pressure pasteurization (HPP) of raw food, a process that uses pressure with minimal heat to kill bacteria, is an effective method for reducing contamination of such products with harmful pathogens like Salmonella, and HPP is now being used by a couple of companies. These raw diets should be quite safe from a Salmonella standpoint. Otherwise, the risk of Salmonella contamination of raw pet foods is still very high, and if anything, the dry food outbreaks show how people can be infected from contaminated pet food.

Why don't we see large outbreaks associated with raw food? Outbreaks get detected because certain patterns or unusual findings are identified. Raw pet food associated outbreaks probably occur but are not as readily identifiable since raw meat contamination is common but involves variable Salmonella types that regularly change. In a situation like that, you can potentially have lots of people getting Salmonella from raw food, but if there is limited commonality in strains and products, it doesn't get picked up as an outbreak. That's particularly true when the  strains that are involved are the common ones found in food, since they would often be dismissed on the premise that the person likely got it from some unknown food source. Without large numbers of cases in an area or a cluster of unusual strains, the investigation wouldn't likely get very far and nothing would be reported.

How do reduce the risk of getting Salmonella from pet food (or your pet)?

  • Don't feed pets in the kitchen. This practice has been associated with an increased risk of disease in a previous outbreak of salmonellosis in children.
  • Wash your hands after handling pet food.
  • Don't let young children have contact with pet food.
  • Use common sense when handling pet feces.

More information about both Salmonella and issues pertaining to raw diets (including how to reduce the risk) can be found on the Worms & Germs Resources - Pets page.

The outbreak that won't go away

The CDC is investigating CDC is investigating more cases of salmonellosis associated with feeder rodent contact, caused by the less-than-catchy-named Salmonella I 4,[5],12:i:-. This strain is the same one that was implicated in a large and prolonged outbreak in the US and UK in 2009-2010 which was also associated with frozen feeder rodents (rodents sold frozen as reptile food) from a single US supplier. The current outbreak has affected people in 22 US states from August 2011-February 2012, and involvement of the same strain from the same source certainly leads to suspicion that this is actually an ongoing problem.

In the latest outbreak:

  • 46 people have become sick. As is common, kids have borne the brunt of this outbreak, with the median age of affected persons being 11 years.
  • 37% of affected people were kids five years of age or younger. Since this outbreak involved feeder rodents, clearly people aren’t heeding the guidelines that kids of that age shouldn’t be in households with reptiles.
  • No two affected people reported buying rodents from the same store. This shows how widespread the problem is and that it must be originating from the place where the rodents are bred and/or distributed, not a focal pet store issue.

Record-keeping at the pet stores complicated figuring out the source. However, two breeders that supplied pet stores received mice from the company that was the source of the 2009-2010 outbreak. This suggests that not only were people exposed from frozen feeder rodents in the earlier outbreak, but that breeding colonies in different areas were infected from that source. This may have allowed wide dissemination of this Salmonella strain into numerous rodent breeding colonies, creating many possible sources of exposure for members of the public purchasing feeder rodents. The large-scale commercial nature of rodent breeding and wide distribution network creates a great opportunity for widespread outbreaks, as is apparent here and with various other outbreaks (including salmonellosis outbreaks from guinea pigs and baby poultry).

If you are going to buy feeder rodents:

  • Treat them as if they are carrying Salmonella, because they just might be.
  • Keep them away from human food. Keep them in a separate freezer or fridge, or in a sealed container if they have to be in the same fridge as human food.
  • Don't handle them in the kitchen.
  • Wash your hands thoroughly after handling.
  • Keep them away from young children, as well as people with compromised immune systems, elderly individuals and pregnant women. None of these groups should have contact with reptiles either.

Image: A package of frozen rats, as sold commercially for feeding reptiles.

Toronto rabies case update

Identification of the strain of rabies in the first person in Toronto to be diagnosed with rabies in the past 81 years has essentially confirmed that the infection was acquired abroad. Toronto Public Health has indicated that the strain obtained from the infected man is one known to circulate in dogs in the Dominican Republic, where the man had been working over the past few months.

Little additional information is being released, including whether the patient is alive (and if so, what his condition is). As part of the typical rabies investigation, 15 healthcare workers and an unknown number of family members and friends have been deemed to have been potentially exposed to rabies from the man and have been offered post-exposure treatment. The risk of human-human transmission is exceedingly low, but given the severity of disease, the logical approach is to err well on the side of caution when considering post-exposure treatment.

While rabies strain typing supports a dog bite as the source, that can't be confirmed at this time since the man was too ill to provide any information by the time rabies was being investigated. Sometimes, exposure is determined indirectly based on information from friends and family (e.g. the person mentioning that he was bitten by a dog) and presumably there is an effort to question people who had contact with the man in the Dominican Republic to try to piece this story together.

Flea collar withdrawal in France

A group of flea (or flea and tick) collars have been removed from the market in France following a risk assessment. The review looked at these widely available, over-the-counter products that contain a variety of different chemicals. The determination was that the risks posed by contact with the collars (particularly to children) were unacceptable compared to the benefits.

As with most risk assessments, cost-benefit is the key. With flea collars, you have something containing a chemical that's easily (and commonly) touched by people, and you also have the potential that young children could put them in their mouths. That's the "cost" aspect. The beneficial side is two-pronged. One consideration is the importance of flea and tick control to human and/or animal health. That's certainly significant, since fleas and ticks can be associated with various problems, including infectious diseases and flea allergies. However, the other consideration is whether there are safer and/or more effective alternatives. The answer to that is yes - there are now much better approaches for flea and tick control than flea collars in terms of effectiveness and safety. The disadvantage is that these alternatives are somewhat more expensive and not available over the counter, but the cost and logistics are far from cumbersome.

So, the withdrawal of the flea collars from the market in France is a very reasonable move, and one that needs to be accompanied by information to pet owners that emphasizes that:

  • yes, flea and tick control are still important.
  • there are much more effective options that are safer for the pet and the family.
  • people should work with their veterinarian to determine the approach that best fits their pet(s) and family.

Rabies in Toronto man

Toronto Public Health has confirmed the diagnosis of rabies in a person in the city of Toronto, the first such diagnosis since 1931. Details are limited at this point, but there appears to be strong suspicion that this is a travel-associated infection.

The affected person is a 41-year-old man who was working in the Dominican Republic as a bartender. He reportedly started to develop signs of illness last month - it's unusual for someone to be clinical ill due to rabies for so long, as typically once signs occur they progress very rapidly (and almost always end in death). Regardless, after he became sick in the Dominican, he returned home to Toronto, presumably for more medical care. He was taken to hospital by police after arrival since he was behaving erratically at customs.  It's reported that he had fairly serious signs before leaving the Dominican Republic, including trouble swallowing and fear of food, water and air. Given that, I'm amazed that he was allowed onto a plane, even with the pretty lax approach that airlines typically take towards sick people boarding planes. While I know circumstances can be difficult and options may have been limited, this isn't really a good way to bring someone home from a foreign country with an unknown disease. Fortunately, rabies isn't spread by casual contact, but you have to consider the potential for more easily transmitted diseases when you go ahead and put someone on a plane with lots of other people. Thankfully his erratic behaviour started on the ground, not in the air, and he didn't have a more transmissible disease.

The man's current condition isn't clear. It appears that the diagnosis was made a few days ago and he's being treated in hospital. However, rabies is almost invariably fatal, especially when disease is advanced by the time it's diagnosed.

People who have had contact with the affected man are being evaluated to determine who requires post-exposure treatment. Further testing will be done on the virus to see what strain it is, to provide more information about the possible origin. Most likely, it was from a dog bite, but that's just a guess on my part.

While little information is available regarding this case, it's a chance to remind people again of a few key rabies prevention points:

  • Pets should be vaccinated against rabies.
  • People (especially kids) should be taught basic bite-prevention practices and to avoid strange animals.
  • Any bite from an animal needs to be investigated to determine whether there might have been rabies exposure.
  • Rabies is very common in many countries (especially less developed countries), particularly dog rabies. People need to pay extra attention to bite avoidance when traveling.
  • Rabies is basically 100% preventable if proper post-exposure treatment is provided. The weak link is often people failing to seek medical care after a bite. That's particularly true for many travelers. If you are bitten while traveling, you need to make sure you get adequate care, or get home to get treated properly, and promptly.
Tags: ,

Bat on a plane

Don't tell Samuel L. Jackson (Snakes on a Plane was bad enough), but on August 2011, a bat was found flying through the cabin of a plane shortly after take-off from Wisconsin. Failing to heed the seat belt sign, it flew around the cabin a few times before it was eventually trapped in a bathroom. The aircraft then returned to the Wisconsin airport...vnot sure whether that was because they were worried about the bat or because they didn't have an available bathroom any more.

Unfortunately, when they got back to the airport, no one thought to close the plane door before opening the bathroom door, so the bat flew out of the bathroom, out of the plane, down the jetway, through the airport and was last seen exiting the airport via automatic doors (smart bat). The problem with the bat's escape is there was then no way to determine whether it was rabid, since even bats with a good sense of direction can be shedding the virus. Because of that, it had to be assumed that the bat was rabid and an investigation ensued.

The Wisconsin Department of Health called the CDC for assistance and a standard investigation was undertaken. A key component was to determine who, if anyone, was potentially exposed to rabies, assuming the bat was carrying the virus. Rabies is spread through direct contact of saliva from an infected animal with broken skin or mucous membranes (e.g. mouth, nose). Most often, this occurs via a bite. Being in the same area as a bat doesn't constitute a risk.

A rabies investigation typically involves interviewing people who were in the same area as the bat to see if they had any contact with it. That was done, but it was complicated by "difficulties obtaining an accurate passenger manifest...". (Considering it seems like I have to do everything short of depositing a DNA sample to fly to the US these days, I can't fathom how they couldn't have a list of who was on the plane.)

Anyway, the airline gave the CDC a list of 15 people that they knew were on the plane and 33 who had reservations (but apparently they didn't know for sure whether they were on the plane). Considering 50 passengers were on the plane (not counting the bat), that left a few unknowns, which was compounded by their finding that some people who had reservations confirmed they were not on the plane. They tried various ways to contact people, but ultimately ended up with 5 mystery passengers.

Fortunately, the risk of rabies exposure in this case is low. All 45 of the contacted passengers reported having no direct contact with the bat, and it's very unlikely anyone else did given the description of what happened. Similarly, none of the pilots (hopefully it was easy to figure out who they were) and other flight or ground crew reported any contact.

An environmental assessment was performed to see if there was a bat problem at the facility, and nothing out of the ordinary was found. They made a few recommendations to reduce the chance of this happening again:

  • Use of netting to cover crevices in the airport where bats might roost.
  • Extending and retracting jetways before the first flight of the morning (I guess to scare the bat out before a plane is hooked up).
  • Training employees on bat capture methods.
  • Testing any bats for rabies.

So, it was more of an interesting story than a true disease concern, but with rabies, you have to be thorough to convince yourself that there's no risk.

It also seems like this bat was much more organized than the airline.

Bali rabies update

As we've discussed previously, rabies has been a big problem in Bali since 2008. Previously rabies-free, this densely populated island has been struggling with a large and persistent canine rabies outbreak that has resulted in numerous deaths and much debate about control measures.

A paper in BMC Infectious Diseases (Susilawathi et al 2012) provides a summary of 104 human cases or rabies that occurred in Bali between November 2008 and November 2010. Some highlights:

  • Dog bites are very common on the island, with a daily average of nearly 100 bites reported over the study period. Since many bites don't get reported, even this large number is an underestimate.
  • The average age of affected people was 36 years, with a range of 3-84 years. All 104 died.
  • Most of the cases (57%) were male. This is common, although whether it is because men are more likely to be bitten (because of greater exposure or greater provocation) or less likely to seek medical care after a bite is not known.
  • There was a history of a dog bite in 96/104 infected people. It's likely a bite occurred for the others as well, but in those cases the patient was unconscious at the time rabies was suspected and family members did not know of any bites.
  • The incubation period ranged from 12 day to 2 years. It was less than 1 year in 98% of cases. Very short incubation periods, like the 12 day one reported here, are almost always associated with bites to the head or neck, since it's a shorter distance for the virus to travel up nerves to the brain.
  • Early signs of disease are often vague.  Pain or numbness at the location of the bite (37%), nausea or vomiting (30%), fever (22%), aches (17%), headache (16%) and insomnia (7%) were most common.
  • 81% of people that developed rabies did not undergo any type of treatment. 11% washed the wound themselves. Only 6% went to the hospital on the day of the bite. The people who went to the hospital received a course of rabies vaccines but did not receive rabies immunoglobulin (RIG, which is anti-rabies antibodies). So, while they were treated, they didn't get the full recommended treatment. This is incredibly frustrating since rabies is almost 100% preventable if people get proper medical care. Failure of most of these cases to even seek care is a huge issue, and inadequate treatment of people who sought medical care compounds the problem. Not all of the vaccinated people completed the full vaccine course before developing signs of rabies. These were individuals who had short incubation periods because of bites to the head and neck.

These results are not surprising but demonstrate a few important concepts, including:

  • the need for education of the general public to seek medical care after a bite.
  • the need for proper education of healthcare providers so that people who are bitten get proper medical care.
  • the need for adequate supplies of rabies vaccine and immunoglobulin. It wasn't stated whether people didn't receive RIG because it wasn't offered or (as is common in some regions) it wasn't available.
  • rabies may not be considered initially when signs first start appearing, as many of these people ended up being treated for various other potential problems before rabies was considered. While rabies is almost always fatal, there have been very few "successfully" treated individuals (meaning they didn't die, but they can still have long-term neurological impairment), but to have any chance at success, treatment needs to be administered as quickly as possible.
  • control of canine rabies is a key part of controlling human rabies.

Rabies exposure and confusion

Max, a 12-year-old Chihuahua from Greenfield, New Jersey, was euthanized recently after he was exposed to rabies. While far from unusual, the case highlights the ongoing risk of rabies exposure as well as issues with understanding of rabies guidelines and communication.

Max was attacked by a rabid raccoon - an ever-present risk for animals that go outside (or get outside) in many regions. Animal control was called and the raccoon was caught. It was euthanized and rabies was confirmed, indicating that Max was very likely exposed to the virus.

Here's where things seem to get strange. The paper reports:

"Once exposed to a rabid animal, a six-month quarantine is required for the exposed animal, even those animals that have been inoculated with a rabies vaccine."

  • Not really. In Canada, standard guidelines are for a 6 month strict quarantine for dogs (and cats) that are not properly vaccinated, but only a 45 day observation period is required for vaccinated animals. I don't know if in this jurisdiction they made up their own different rules, whether someone doesn't know what's supposed to be done or whether it's poor reporting, but it's a concern because it can be a difference between life and death... not necessarily from rabies, but from the quarantine requirements alone. People are often unwilling to undertake a strict 6 month quarantine and choose euthanasia (as was the case here), while the 45 day observation period is much more acceptable.

The attending veterinarian stated "Because of the way it was exposed and because of the positive, I think there was a really good chance this dog was going to get rabies".

  • It's certainly possible, and nowhere does it say whether Max was properly vaccinated. However, there's a reason we vaccinate. It's a highly effective vaccine and we're trying to prevent disease. Nothing's 100%, but with proper vaccination, the risk of rabies is greatly reduced.

It's also stated that "due to the nature of rabies, until behavioral changes occur, the animal is not infectious".

  • While this doesn't have anything to do with Max's situation, it's not true. Animals can shed the virus for a short period before they show signs of illness. That's the reason there is supposed to be a 10 day quarantine period after a dog bites someone - to see if the dog develops signs of rabies (which would have major implications for the person who was bitten). 

Curiously, the article ends with a reminder to vaccinate pets, which seems kind of strange if their assumptions are that an exposed animal will get sick irrespective of vaccination status and that vaccination will have no impact on what happens to an animal after exposure.

However, despite the miscommunication, the take-home message emphasizing the need for vaccination should be heeded. As well, people making decisions about what to do after rabies exposure should make sure they do so based on the best evidence that's available, namely the Compendium of Animal Rabies Prevention and Control.

Salmonella in baby from pet reptile

.A five-month-old Britich baby was hospitalized with salmonellosis that was presumably acquired from a family pet. The baby developed severe diarrhea and was rushed to hospital. Fortunately, the child has recovered, something that's far from assured in such cases, since salmonellosis can be life-threatening in infants.

As expected, an investigation followed the diagnosis of salmonellosis. Typically, these investigations focus on food and animal contact, and since this family had a bearded dragon (see picture) and tortoises, the investigation honed in on the reptiles. Reptiles are high risk for Salmonella shedding and are commonly implicated in human infections. Further, the type of Salmonella that infected the infant, S. Pomona, is commonly associated with reptiles. It doesn't sound like they've confirmed that the same strain of Salmonella was present in the reptiles, but I assume that testing is underway.

Reptiles should not be present in households with infants. It doesn't matter if the animal never leaves its enclosure, because while the critter may not leave the enclosure, Salmonella will.

In low risk households (households without kids less than five years of age, elderly persons, pregnant women or immunocompromised individuals), good management practices can be used to minimize the risk of transmission of Salmonella, but given the potentially fatal nature of salmonellosis in infants and other high-risk individuals, these precautions are not adequate in high-risk households. While reptiles can be great pets, they're just not worth the risk in some situations.

Pet turtles and Salmonella...why am I not surprised?

The CDC has announced an investigation of three multistate outbreaks of salmonellosis linked to pet turtles. At last report, 66 affected people had been identified, and since most outbreaks like this only identify a minority of cases, it's safe to assume there are many others.

  • Three different types of Salmonella have been implicated; S. Sandiego, S. Pomona and S. Poona.
  • Infected people have been identified in 16 US states (see map).
  • 11 people have been hospitalized, but no one has died.
  • Most cases (55%) have involved children under the age of 10.
  • Almost all infected individuals who provided information about turtle contact with said the turtles were less than 4 inches long.

This ongoing outbreak, dating back to September 2011, has all the hallmarks of a pet turtle-associated outbreak: a large number of cases over a wide area and prolonged period of time, a predilection for young children, and the potential for severe disease. While far from novel, this outbreak also highlights some recurring themes.

The potential for widespread outbreaks from mass production and distribution of pets has been repeatedly demonstrated with a range of diseases, including recent examples involving chicks and guinea pigs. That doesn't mean that mass production is necessarily higher risk (although it certainly can be), but when something goes wrong, it can go very wrong because of the large number of infectious animals that get sent out.

Sale of turtles with shell lengths under 4 inches has been banned in the US since 1975. This is because small turtles are more likely to be handled (and potentially put in the mouth) by young kids. Despite extensive lobbying by US turtle breeders, the law remains in effect, but it's widely flaunted. It's surprising more efforts aren't put into enforcing this regulation given the number of people who are sickened every year from contraband turtles. (It's also surprising that infected people in the US haven't started large lawsuits against people distributing small turtles.)

Anyway, this is yet another reminder about the risks associated with reptiles and high risk individuals (i.e. young children, elderly, pregnant, immunocompromised) and the need for pet turtle owners to follow basic hygiene and infection control practices. More information about turtles - for owners, veterinarians and healthcare professionals - can be found on the Worms & Germs Resources page.

Early West Nile virus case in Pennsylvania horse?

Local media are reporting an apparent case of West Nile virus infection in a horse in Northampton County, Pennsylvania. This is surprising since, while I know there are certainly mosquitoes emerging early with this mild weather, seeing active mosquito-borne infections at this time of year would be very unusual. That's particularly the case with West Nile virus, since it tends to be a late summer and fall disease based on the mosquito types that are predominant at that time of the year.

Information about this West Nile virus case is pretty sparse.  The report simply says the horse was euthanized because it was "suffering from the virus." Knowing if and how it was actually diagnosed is important to determine whether it was truly an active infection or a false-alarm, like this winter's report of West Nile virus in British Columbia.

Regardless, it's still a good reminder that we are now heading into the time of year when we have to think about mosquito-borne diseases in various species (including people). Measures to reduce mosquito populations, such as eliminating standing water (see picture), and mosquito bite avoidance are always good, regardless of what diseases are currently being diagnosed.

Image source:

Hitch-hiking mosquitoes and emerging diseases

Authorities in Hawaii are advising people in Oahu to eliminate standing water as a mosquito control measure. While it's always a good idea, it's of particular concern in this case bacause a rare type of mosquito, Aedes aegypti, was found around the Honolulu International Airport. This mosquito species is a highly effective vector for various infectious diseases, including dengue fever and yellow fever.

What does this have to do with companion animal disease? Well, nothing directly, but it's a good reminder of how infectious diseases can easily reach a distant area (even Hawaii) in a short period of time.

There are a plethora of mosquito-borne diseases out there, and presumably we don't even know about many of them. Mosquitoes don't fly very far, which helps contain these diseases to certain areas. However, mosquito-borne diseases can still spread over wide ranges if either the pathogen or the mosquitoes are hitch-hiking.

A common way for pathogens to travel is in various kinds of animals (especially birds) that can harbour the pathogen (usually a virus) and infect mosquitoes in distant areas.

Modern transportation can be an effective vehicle for pathogen-laden mosquitoes. Theoretically, all it takes is for a single infected mosquito to hop onto a plane and survive the flight to a new region. If the mosquito bites a susceptible host, it can cause a rare disease - that's of particular concern since it's unlikely that an exotic foreign disease in someone who has not left the country would be promptly diagnosed (and therefore promptly treated). Even worse, the disease could establish itself in the new region if a series of things happen:

  • The mosquito has to bite something or someone.
  • That something or someone has to be susceptible to the pathogen and that pathogen needs to grow inside the host's body to high enough levels that it can infect another mosquito.
  • Another mosquito that can carry the pathogen must come along, bite the infected individual and acquire the pathogen.
  • The new mosquito must then find another susceptible host to bite.
  • The above needs to be repeated enough times that the pathogen establishes a foot hold in the area and starts causing disease.

Is this common? No.

Is it possible? Yes.

West Nile virus is an example of what can happen. This mosquito-borne virus came out of nowhere in North America in the early 2000's and caused widespread illness and death in humans, horses and various other species. Did it arrive via a mosquito on a plane? No one knows, but it's certainly a possibility.

Multistate Salmonella outbreak from chicks and ducklings...surprise, surprise

At this time of year, I start to see ads from local feed supply stores about annual chick sales. Overall, it's not a big deal and most people that buy chicks don't have problems. However, it can be a particular concern for certain high risk groups, particularly young children, and outbreaks of salmonellosis are a recurring issue.

Contact with young poultry is considered very high risk for Salmonella exposure, since Salmonella shedding rates amongst the little guys are pretty high. Most outbreaks of salmonellosis disproportionately involve young kids, due to a combination of increased handling, poor hygiene and  inherent increased susceptibility of young kids to infection. The problem is that sometimes people buy chicks because their young kids want to raise and handle them. Outbreaks associated with sales of young chicks, as well as hatching chicks in schools and daycare, have been reported.

A recent CDC report describes yet another multistate outbreak of Salmonella, this time associated with a mail-order hatchery.

The outbreak occurred from February to October 2011 and was first noticed through lab-based identification of clusters of Salmonella Altona and Salmonella Johannesburg. Ultimately, 68 cases of S. Altona and 28 of S. Johannesburg infection were identified in 24 states. Here are some highlights:

  • 32% of people with S. Altona and 75% with S. Johannesburg were kids 5 years of age or younger.
  • 74% of people with S. Altona and 71% of people with S. Johnannesburg reported recent contact with young poultry.
  • Most people that had poultry contact reported purchasing chicks or ducklings at local agricultural feed stores. These stores got the chicks and ducklings from a single mail-order hatchery.

Mass production of animals for widespread distribution, whether it's guinea pigs like I wrote about the other day, or chicks and ducklings here, increases the risk of widespread outbreaks because a single focus of infection can have far-reaching effects.

Mass production and mail-ordering of chicks isn't likely to stop, so what can people do to reduce the risk?

  • Keep high-risk people (that is kids 5 years of age or less, elderly individuals, pregnant women and people with compromised immune systems) away from young poultry. This includes keeping chicks out of schools, where hatching chicks is still performed in some areas.
  • Use good hygiene practices when handling chicks or anything in their environment. Assume that all of the chicks are shedding Salmonella and treat them accordingly. By that I mean use good general hygiene practices, particularly hand hygiene, to reduce the risk of exposure.
  • Stores selling chicks should also provide basic safety information to inform and remind people to use appropriate practices to reduce the risk of infection.

Botulism outbreak in horses

Botulism outbreaks in horses are usually bad news. Horses are very susceptible to botulism, and outbreaks in horses caused by contamination of food often end up killing multiple horses on a farm. The recent botulism outbreak in Reddington, IN is another reminder of how deadly it can be.

The outbreak involved a family that lost five horses to suspected botulism. "Suspected" because this disease can be hard to confirm sometimes, although it's usually possible to make a pretty solid presumptive diagnosis based on how the horses look and by ruling out the few other possible causes. The details are pretty sketchy. Apparently there are some other sick horses, but how sick they are and how many isn't clear.

Botulism occurs in two ways. In adult horses, it almost invariable occurs after ingestion of the extremely potent botulinum toxin produced by the Clostridium botulinum bacterium. In foals, it usually occurs after ingestion of the bacterium, which then produces toxin in the foal's intestinal tract.

In adults, outbreaks are usually associated with contaminated feed.  There are some high-risk feeds like haylage and silage (see photo) that we usually focus on first, but sometimes botulism toxin can be found in hay or other common feeds. Haylage, silage and other fermented feeds become a problem with they are improperly fermented, allowing the Clostridium botulinum to grow and produce its toxins. Sometimes, contamination of feeds can occur when an animal that has died of botulism (and has the bacterium and its toxins in its body) gets incorporated into hay or other feedstuffs.

When an outbreak is suspected, a key step is removing any potentially contaminated feeds to reduce further exposure, although often it's too late by the time the disease is recognized. Antitoxin (which is pre-formed antibodies that help neutralize the botulinum toxin) can be given to exposed horses, but it's extremely expensive and does not reverse any damage that's already been done. That's why these outbreaks are often so disasterous, because when the diagnosis is made the only thing left to do may be damage control to try to save some of the less affected horses. That's tough because botulism has a very high mortality rate in horses.

The farm owners in Reddington are urging local horse owners to be on the lookout for botulism. It's reasonable, but rarely do we see multi-farm outbreaks from botulism. They also state that botulism doesn't affect cattle, which is wrong. Cattle are more resistant than horses, but they certainly can get botulism.

A botulism outbreak in horses poses little risk to people. People are susceptible to this horrible disease as well, but to get it someone would have to ingest the same contaminated feed that the horse did. There's no risk of transmission of botulism from an infected horse to a person or another animal.

Was ist MRSP?

Since MRSP is an international problem (no matter what language you speak), there is now a resource sheet for our German-speaking friends as well:

Informationen in Deutsch ist ab sofort verfügbar hier und in unserem Abschnitt Ressourcen. Ubersetzt von Georg Lehner, Dr. med. vet.


Salmonella outbreak from guinea pigs

Guinea pigs are relatively benign pets in terms of zoonotic diseases, but like any animal, they can carry some pathogens that are transmissible to people. This was highlighted in a poster presentation at the recent International Conference on Emerging Infectious Diseases in Atlanta. The poster (Bartholomew et al) described a CDC investigation into an outbreak of Salmonella Enteritidis infections in people in multiple states in 2010.

Here are some highlights:

  • The first affected person was a child who purchased a guinea pig from a pet store. The animal looked "frail" and was housed with the child's existing guinea pig. Later that month, both guinea pigs developed diarrhea and died. Shortly thereafter, the child developed diarrhea, fever, cough, chest and back pain, a rash and some other signs. Ultimately, a Salmonella infection of the sternum was diagnosed, indicating that Salmonella had traveled from the intestinal tract to the child's bloodstream and set up an infection in the breast bone.
  • The CDC investigation focused on other people who had been diagnosed with the same strain of S. Enteritidis. They identified 10 such cases who also reported guinea pig exposure, scattered over 8 US states. 
  • The same Salmonella strain was also identified in guinea pigs, including one from a Texas guinea pig broker, around the same time as these cases were occurring.
  • Most of the affected individuals were children. Three had purchased guinea pigs from the same pet store chain as the first child. Three other affected people were employees of stores from that pet store chain.
  • Testing of the environment in pet stores from that chain did not identify Salmonella. However, since sampling was done well after people got infected, it doesn't mean it wasn't there earlier.
  • No common guinea pig source supplier was found, but one Pennsylvania breeder was identified as a possible source for the cases associated with that pet store chain.

This is pretty strong evidence that the infections were guinea pig-associated.

Some take-home messages:

  • Any animal can be a source of potential infection, and general hygiene practices should be used all the time to reduce exposure to pet feces.
  • Sick animals might mean the potential for sick people. While it's sometimes tough to convince people that testing dead animals (especially dead animals that don't cost much) is useful, it might have had a great impact on the care of the first child. If physicians knew that the child was exposed to Salmonella, they might have been able to make the diagnosis much quicker.
  • Pet stores are not uncommonly implicated as sources of outbreaks, and there are also risks to their staff. Pet stores need to have good infection control, hygiene and disease reporting practices.
  • The nature of pet rodent distribution, with large breeders sending animals to brokers where large numbers of animals get mixed and sent on to pet stores, creates the potential for widespread disease transmission, as has been repeatedly shown in the past.

Canine distemper in Niagara region raccoons

The Ontario Ministry of Natural Resources and Welland SPCA are warning people about an apparently large number of cases of distemper in raccoons in the area. Distemper is a pretty nasty disease which can be spread between dogs and wildlife. It’s caused by canine distemper virus, but the "canine" part of the name can be a little misleading, since this virus readily infects some other species such as raccoons.

In addition to the problems with sick and dying raccoons caused by the outbreak, there are two main concerns for pet dogs:

One concern is the potential for wildlife to transmit canine distemper virus back to dogs. It’s hard to say what the risk of that is, and the risk would be primarily to young dogs that are not adequately vaccinated. If a dog has an encounter with a raccoon that is sick with distemper, it’s possible the pet could be exposed to the virus. Dogs are also probably more likely to have close encounters with sick raccoons that are unable or unwilling to run away, as opposed to healthy raccoons. If an inadequately vaccinated dog gets exposed, it can get very sick, which is obviously bad for the dog, and also creates another potentially infectious animal to keep passing the virus along.

The other concern is differentiating distemper from rabies. Distemper can cause signs that are very similar to rabies. If a dog has an encounter with a raccoon that is behaving abnormally, rabies is a big concern. If a dog is exposed and the raccoon is not available for rabies testing, the dog would require a 6-month strict quarantine or euthanasia if it's not vaccinated (or not adequately vaccinated), or a 45 day "observation period" (on a proverbial tight leash) if vaccinated. These measures aren’t easy to implement, and unvaccinated dogs often end up being euthanized because owners don’t want to go through the hassle of a 6 month quarantine.

What does this mean to the average pet owner? Well, nothing that they shouldn’t be thinking about anyway. This just increases the relevance of some routine measures such as:

  • Keeping dogs that are outside are under control so they don’t encounter wildlife.
  • Ensuring dogs are properly vaccinated against distemper and rabies.
  • Taking particular care to prevent exposure of young unvaccinated dogs to wildlife.
  • Discouraging raccoons from taking up residence in yards.

Nothing earth-shattering, but these basic precautions can greatly reduce the risk of disease transmission from wildlife to dogs, be it rabies, distemper or other bad bugs.

Canine parvovirus in cats

An interesting and frankly somewhat scary report in an upcoming issue of Veterinary Microbiology (Clegg et al 2012) provides further information suggesting that cats might be a source of canine parvovirus infection. This potentially fatal infection, which typically affects young unvaccinated (or inadequately vaccinated) puppies, is a major problem, and outbreaks occur (not uncommonly)  in some high-risk populations like shelters.

In the 1970s, a new form of canine parvovirus, CPV-2, emerged and rapidly spread worldwide. That predates my veterinary career but I've heard stories of clinics where you couldn't turn a corner without stepping on a dog that was hospitalized for treatment of parvo, since it was a new disease and vaccines were not yet available. CPV-2 was shown to be able to grow in cat cells in the lab, but not in live cats, so it was generally assumed that dogs had CPV and cats had their own closely related virus, feline panleukopenia virus (FPLV). However, new variants of CPV-2 have emerged over time, and these seem to have a greater ability to infect cat cells in the lab, and disease caused by these strains has been reported in cats both experimentally and in limited real-world situations. However, it was still considered an uncommon event and the role of cats in parvovirus infection of dogs was largely thought to be inconsequential.

Or maybe not.

In this new study, researchers collected fecal samples from 50 cats in a cat-only shelter, and 180 samples from 74 cats at a shelter than housed both dogs and cats. Canine parvovirus shedding was identified in 33% of cats from the cat shelter and 34% of samples from the dog/cat shelter. A concern with a study like this is cross-reaction of tests for CPV and FPLV, but they went a few steps further to confirm that the virus was indeed CPV, not its feline relative.  They also showed they could grow the CPV from fecal samples in cells in the lab, which means they were detecting live virus in the animals, not just dead viral bits working their way through the cats' intestinal tracts.

The results are interesting and concerning, since they showed that a pretty large percentage of cats in some situations could be shedding live CPV, making them a potential source of infection for dogs (and possibly other cats).

What makes this even more concerning is the duration of shedding that they identified when they collected samples from the dog/cat shelter over time: cats shed the virus for up to 6 weeks, despite appearing healthy.

This raises concerns about the potential role of cats in the spread of CPV. Cats and dogs don't tend to mix much in parks or outside, but CPV is a very tough virus that can survive for a long period of time in the environment.  It's certainly plausible that cats could be depositing CPV-laden feces in the outdoor environment, and since the virus can survive the outdoor exposure and some dogs are notorious poop-eaters, it's a route of transmission that can't be dismissed. Cross-contamination within shelters is also a concern.

The true role of cats in canine parvovirus infection isn't known and it's probably quite limited compared to dog-to-dog spread. However, this study shows that we at least need to be thinking about it and considering cats when dealing with parvovirus problems in shelters and households.

Some things to think about:

  • Young puppies should be kept away from cats, especially strays and cats from shelters, until they are properly vaccinated.
  • Parvo is one more reason to have good physical and procedural separation between cats and dogs in shelters.
  • If a parvo outbreak in underway in a facility, prevention of potential cross-contamination from cats is required.
  • If a cat has been in contact with a dog with parvo, it should probably be considered potentially infectious and kept away from susceptible dogs for at least a few weeks.
  • Canine parvovirus vaccination is highly effective in dogs. If a dog is properly vaccinated, the risk from cats (or other dogs for that matter) is minimal.

More Moroccan rabies

While rare, Morocco continues to be a source of rabies in European animals. The latest case involved a puppy imported into the Netherlands. The (somewhat) brief version of what happened goes like this:

  • On Jan 28, 2012, a Dutch couple bought an 8-week-old puppy in a parking lot in Morocco. The puppy was taken to a local veterinarian, microchipped and given a certificate of good health. It would have been too young to vaccinate against rabies.
  • On Feb 4, the couple travelled from Morocco to Spain by car and ferry. They then obtained a European pet passport from a Spanish vet, despite the fact that the dog was not vaccinated against rabies (an EU requirement for a pet passport).
  • On Feb 11, they returned to the Netherlands. Customs officials "cuddled" with the puppy but apparently didn't ask about rabies vaccination. When they got home, the couple exposed the puppy to many family and friends.
  • On Feb 14, the puppy started to become aggressive. They contacted a veterinary practice, and it was assumed the problem was stress, so a sedative was given. (It's not clear whether the puppy was actually examined. If not, that's a pretty big mistake.)
  • On Feb 15, the puppy was uncontrollable. The report states "When they realized that the puppy originated from Morocco, the veterinarians contacted the Netherlands Food and Consumer Product Safety Authority (NVWA)." The puppy's history should have been a basic question asked when the couple first contacted the veterinary practice about the animal. Regardless, the concern about rabies came to the forefront with that information, and the puppy was euthanized. Rabies was confirmed that evening (a pretty impressive turnaround time for rabies testing).
  • As is typical, an investigation was launched, and a search for people who had contact with the puppy during the period when it was potentially infectious was started. That's not easy when it involves multiple countries, as was the case here, since the potentially infectious period is 10-14 days prior to the onset of clinical abnormalities. The potential contacts included the Moroccan veterinarian, some friends in Spain, the Spanish veterinarian, three customs officials, a couple of unknown people in a Spanish restaurant and at the Malaga airport, and 43 people after arrival in the Netherlands (plus an unknown number of people who petted the puppy on the street).
  • Contact doesn't mean exposure, since rabies isn't transmitted by casual contact, so the type of contact was queried further. The risk is from bites or contact between the dog's saliva and broken skin or mucous membranes (e.g. mouth, eyes). Because of concerns that kids don't accurately recall the type of contact they have (meaning they might fail to mention a little nip or some other high risk contact), all nine children who had contact with the puppy were given post-exposure prophylaxis. The Dutch friends in Spain reported high risk exposure and were also treated, however they had to return to Amsterdam for full treatment since anti-rabies immunoglobulin (antibody) was not available in Spain. Information was provided to Moroccan officials but information about what happened there wasn't available.
  • Overall, it is stated that 45 people needed post-exposure treatment (although who those 45 were isn't really clear). That's a pretty large exposure, resulting is much angst and expense.
  • Two cats and a dog were also exposed to the puppy. The dog had been vaccinated, and received a booster. (It would also be standard protocol to quarantine them for 45 days as well, but that's not stated.) The cats were euthanized because a "suitable quarantine place was not available," a rather strange statement since quarantine isn't a very high tech procedure. 

Obviously, this is of relevance to people that live in Morocco or are going to get a dog from Morocco. Those people need to be aware of rabies, be careful when getting a pet, ensure their pets are properly vaccinated against rabies and be careful around stray animals. This report also highlights a couple of other issues:

  • A parking lot isn't a good place to buy a puppy, for many reasons. A reputable breeder isn't going to sell a puppy there, and there are lots of good, well-evaluated puppies available through good breeders and shelters.
  • Pet importation requirements are pretty weak in a lot of ways, especially if no one actually pays attention to them. That seems to be a recurring theme as well with these imported rabies cases. Here, the puppy was given a European dog passport without the required rabies vaccination, and was not kept in quarantine after arrival. It also went through no less than three customs points in transit, where no one queried rabies vaccination status. The mandatory 3 month quarantine would have prevented exposure of most of the people that required post-exposure treatment.
  • Visitors to areas where rabies is endemic in the dog population need to be aware of it. Encountering stray dogs isn't exactly rare in many countries, and while staying away from strays is a good general rule everywhere, people should be particularly careful in areas where the risk of rabies is high. Travelers also need to be aware of what to do if they are bitten by a stray animal.

Army vs parents in soldier rabies case

The parents of a US soldier who died of rabies after being bitten by a dog while deployed in Afghanistan want their son's superiors to be held accountable. Specialist Kevin Shumaker died last August, eight months after being bitten by a dog. An Army investigation concluded that he died because members of his unit ignored rules prohibiting keeping pets (they were befriending feral dogs) and that he didn't seek treatment or notify the chain of command after being bitten. His parents feel that their son is being falsely blamed and that people who should have known better didn't do their jobs. It's a complex issue with some interesting questions.

What should the average soldier know about rabies?

It should be assumed they know absolutely nothing to start off, and a risk assessment should be performed for each deployment to determine what they need to know. When they are being deployed to a rabies-endemic area, they need to learn to stay away from dogs and report dog bites promptly, and why.

Whose job is it to report a bite?

At the end of the day, everyone has to be their own advocate and make sure they report any possible rabies exposure. People up the chain of command don't see everything and individuals need to protect themselves. However, once the bite is reported, others have to act. That might be the breakdown here.

Was anyone actually notified?

The Army's investigation actually documents the fact that Spc. Shumaker notified other personnel at least twice. One was a veterinary corps officer and the other was the person doing his post-deployment health screening. Here's where the ball was probably dropped. Every veterinarian knows about rabies. A veterinarian working in a rabies endemic region is certainly aware of the risks and has a responsibility to act on a reported bite. I find it astounding that a veterinarian in this situation wouldn't initiate a response, particularly given the fact that (at least in my limited experience) the US Army Veterinary Corps has some excellent veterinarians, so this seems rather strange. Further, what's the purpose of a post-deployment health screening if health issues that arise are ignored? If the person doing the health screening didn't understand the concerns about rabies, he or she was inadequately trained and shouldn't have been doing the job. If the screener was properly trained and didn't report it, he or she was incompetent, plain and simple.

Would anything have changed the outcome here?

Absolutely. Rabies is almost 100% fatal, but it's almost 100% preventable when post-exposure treatment is given before the onset of disease. There was lots of time in this case between the bite and when the soldier became ill, and if he had been treated following one of these reports, you can almost guarantee he would not have developed rabies.

Whose fault is this?

Well, everyone plays a role here. The soldier ignored the animal contact rules. Superior officers on base presumably ignored the fact that they were ignoring the rules, probably not thinking about the possibility of rabies, and seeing the positive effect on morale of interacting with the dogs. If the veterinary officer and post-deployment health screener were told about the bite and did nothing, they played a huge role since they, of all the people in this chain, should have known better.

What should happen here?

Rather than fighting over who's to blame (the usual response), an investigation should figure out why this happened and how to prevent it from happening again, largely via better training and clear expectations of personnel.

Hopefully that's happening, since Deputy Commanding General Maj. Gen. William Rapp recently approved a series of recommendations, including:

• Further investigation to see if any members of the unit should be disciplined for their actions or omissions during the unit’s deployment to Afghanistan

• Institute an animal-borne disease surveillance program, standardize rabies vaccine requirements and improve dog bite reporting requirements (I'm surprised that wasn't already the case)

• Reinforce animal bite and rabies training for veterinarians and post-deployment health screening staff

Rabid horses in Tennessee

Rabies is pretty rare in horses in North America, with only 37 reported cases in the US in 2010 and 1 in Canada in 2011 (the latest years for which data are available). So, finding two apparently unrelated cases of rabies in horses in the same area in the same month is pretty unusual and concerning. Yet, that's what's happened in Tennessee, where rabid horses were identified in both Rutherford and Marshall counties in January.

Little information is available about the cases, but both were identified as having the skunk rabies virus variant. That doesn't necessarily mean they were infected by skunks (since other species can be infected by this virus variant) but it is suggestive, and indicates that rabies must be active in the skunk population in that region.

Regardless of the source, these cases are a reminder of why rabies vaccination of horses is important, and why rabies vaccination is considered a "core" equine vaccine by the American Association of Equine Practitioners. Rabies is invariably fatal in horses and it's also a major public health risk. While I've been unable to find confirmed cases of horse-to-human rabies transmission, it's a possibility, and additionally, rabid horses have killed people because of their unpredictable and aggressive behaviour.

Vaccination is cheap insurance against rabies - it's never a 100% guarantee, but it's a whole lot better than without vaccination.

(click image for source)

Toxoplasma risk factors for cats

There's been a lot of publicity (aka hype bordering on paranoia, including a recent article in the Toronto Star) about the cat-associated parasite Toxoplasma gondii lately. Cats are the definitive host of this parasite and it can cause serious disease in certain people: in pregnant women who have not been previously exposed to the parasite it can infect the unborn fetus, and it can cause severe illness (including neurological disease) in people with severely compromised immune systems. It's also been very loosely implicated in various other conditions, but much of the information gets overblown, as there is lack of solid evidence of a role of Toxoplasma in most of these cases.  Unfortunately, cats end up getting a bum rap in the process, even though most Toxoplasma infections don't come directly from cats.

Nonetheless, toxoplasmosis is a potentially devastating disease in some circumstances. and taking measures to reduce exposure to the parasite makes sense. To do this you need to know what makes cats more likely to be infected, so that these factors can be modified. A recent paper in Preventive Veterinary Medicine (Opsteegh et al. 2012) investigated risk factors for cats having antibodies against Toxoplasma. It's important to note that the presence of antibodies means the cat was exposed at some point and mounted an immune response, not that it's currently shedding the parasite in its feces. Most cats only shed Toxoplasma in their feces for a very short window of time (a week or two) after initial exposure, and that usually occurs early in life. Therefore, it's rare for older cats in households to be shedding the parasite.

The research group found 18% of cats they tested had antibodies against Toxoplasma, and they identified a few factors associated with previous Toxoplasma infection:

  • Age: Younger cats were less likely to have antibodies. The likelihood of having Toxoplasma antibodies increased steadily from 1-4 years of age.
  • Hunting
  • Presence of a dog in the house
  • Being a former stray
  • Feeding raw meat

Most of these make perfect sense and are consistent with other studies. Cats typically get infected by ingesting Toxoplasma cysts found in the muscle of other animals. So, cats that are outside (indoor/outdoor cats, former strays) and hunt, or cats that are fed raw meat are more likely to be exposed. Analysis of the data indicated that hunting contributed the most.

So, while the risk of Toxoplasma infection for the average person is pretty low, some basic management practices can further reduce any risk:

  • Keep cats indoors: This greatly reduces the chance they will be exposed to the parasite. It is also good idea for several other reasons.
  • Don't feed cats raw meat: Cooking meat to the recommended temperature and time will kill any encysted parasites - this also helps prevent exposure of people eating the meat (to Toxoplasma and lots of other bacteria).
  • Control rodents in the house (not by getting a cat!): Indoor cats can still be exposed to various infectious agents through catching mice. I know it's not always easy or even possible (my cat still catches the odd indoor critter) but taking measures to reduce the likelihood of this is wise.

Other important preventive measures include:

  • Changing the litterbox regularly, especially if a high-risk person has to do it. Toxoplasma oocysts need at least 24-48h in the environment to become infective. If feces are removed daily, they don't get that chance.
  • Clean up any fecal accidents and remove any fecal staining of the haircoat (e.g. poop stuck around the rear end of long-haired cats) promptly, before that 24-48h window expires.
  • Wash you hands regularly, especially after contact with the litterbox or any potentially contaminated areas.
  • Wash vegetables and cook meat properly. You're more likely to get Toxoplasma from food than from your cat.

More information about Toxoplasma can be found on the Worms & Germs Resources page.

Methicillin-resistant staph...What's in a name?

I've written about this topic before, but it's an important (and increasingly common) issue to understand, so bear with me while I address the subject again.

I typically get multiple case consults in person, by phone or by email about methicillin-resistant (MR) staphylococci every day. A lot of these start with "I have a case with an MRSA infection..." While trying not to be rude, I tend to interrupt the conversation at that point with "Is this actually Staph aureus or another staph?"

I do this for a few reasons:

  • A few years ago, the vast majority of "MRSA" infections in dogs, cats, horses and other companion animals were actually MRSA - that is methicillin-resistant Staphylococcus aureus. However, in the past few years, there's been a tremendous upsurge in other MR-staph, particularly booming numbers of MR-Staphylococcus pseudintermedius (MRSP) infections in dogs. These days, if it's a dog or cat, when I ask the "What staph is it?" question it's usually not actually MRSA. We're  starting to see more MRSP in horses too, complicating things in that species as well.
  • Staph are divided into two groups, coagulase positive species (which include S. aureus and S. pseudintermedius) and coagulase negative species. The coagulase negative species are commonly found in or on healthy animals and are often methicillin-resistant, but they are not very virulent and don't usually cause disease outside of very high risk populations (e.g. very sick animals in a veterinary hospital). If a MR coag-negative staph is isolated, I am far from convinced it's the culprit, and typically the real cause of the problem still needs to be found.
  • MRSA is much more of a concern from a public health standpoint, as it can move between animals and people. While MRSP can cause human infections, these are extremely rare.
  • MRSA is not really adapted to live in dogs, cats, horses and many other animals. It can, for a while, but doesn't do so longterm, and the vast majority of MRSA carriers will get rid of it on their own. In contrast, it appears that MRSP (at least in dogs) can stay with the animal for a very long period of time. Therefore, an animal that has had an MRSP infection has a reasonable chance of shedding the bacterium for a long period of time, which might be of relevance for its health in the future.
  • The two main MR-staph of concern in companion animals are MRSA and MRSP. Some diagnostic labs still don't try to differentiate the two, despite the fact that there are different guidelines for determining whether they are methicillin-resistant. If someone has a result that doesn't differentiate MRSA from other staph, I tell them their lab isn't doing things right and they need to talk to them so they can have confidence in the results.

More information about MRSA and MRSP can be found on the Worms & Germs Resources page.

Salmonella from turtles...again

Yet another outbreak of salmonellosis traced back to pet turtles has been investigated by CDC and Pennsylvania's State Health Department. Pet turtles are notorious Salmonella vectors, for several reasons, including the fact that small aquatic turtles very commonly carry the bacterium, they are marketed towards young kids (who are increased risk of infection), and people tend to use poor (or no) hygiene practices when handling turtles or having contact with their environments. Efforts to restrict the sale of small (less than 4-inch long) turtles have greatly reduced Salmonella infection rates in people in the US, but have come under continual pressure from the turtle breeding industry, and the regulation is often flaunted by pet stores and road-side turtle sellers.

From August 5 to September 26, 2011, 132 cases of Salmonella Paratyphi B infection were identified in 18 US states.

  • The median age of infected individuals was 6 years, and 2/3 were less than 10 years of age. This is consistent with a pet-associated outbreak.
  • 56 patients (and their families, presumably) were interviewed, and 64% of them reported turtle exposure. That's a lot higher than one would expect if a random sample of the general US population was surveyed, and suggests that turtles were an important source.
  • Of the 15 people who could provide details about the turtle, 14 of them described turtles that would have been too small to be legally sold in the US. This isn't surprising, and shows both the risk associated with these small turtles and the fact that this law is being widely ignored.
  • The same strain of Salmonella was isolated from turtle tank water in five homes (it's not clear if only five were tested or if there were some negative tanks too). That's further evidence implicating the turtles.

This is yet another reminder of the risks posed by small turtles, particularly to young kids. Small turtles have high Salmonella shedding rates, are easy to handle and are even small enough for kids to put in their mouths (yuck!). That's a bad combination.

In 2007, Louisiana turtle breeders sued to reverse the FDA's small turtle ban. Fortunately they weren't successful, however it's clear that the turtle ban needs to be enforced, but that's hard to do. Perhaps more important, then, is increasing public awareness of the risks. If people are better informed of the issues, they can make better decisions about acquiring pets and how to properly manage them. One such resource for the public is the Turtles fact sheet that we have freely available on the Worms & Germs Resources page.

Severe Pasteurella infections from palliative pet care

Pasteurella multocida is a bacterium that's commonly found in the mouths of dogs and cats. It's a common cause of cat and dog bite infections in people, but can also be spread through close contact with pets (without bites). It's logical to assume that the closer the contact, the greater the risk of transmission. A recent report in Clinical Infectious Diseases (Myers et al 2012) describes three people with life-threatening Pasteurella infections. A unique aspect was all three people got sick from nursing dying pets.

Case 1

  • A 55-year-old woman with sore throat, fever and difficulty swallowing was diagnosed with epiglottitis (inflammation of the epiglottis, a part of the throat region) and hospitalized. Pasteurella multocida was identified on a blood culture.  It was subsequently revealed that she had provided palliative care to her dying dog. As part of this, she was dropper-feeding the dog honey, and also eating honey with the dog from the same dropper.

Case 2

  • A 63-year-old woman with sore throat, difficulty swallowing and hoarseness was diagnosed with uvulitis (inflammation of a different part of the throat region) and narrowing of her airway. As with Case 1, P. multocida was isolated from her blood. Her cat had died six weeks earlier and she had "continuously held, caressed, hugged and kissed her cat during its last 7 days of life."

Case 3

  • A 66-year-old woman was hospitalized with fever, chills, cough and difficulty breathing. She had severe pneumonia and P. multocida was grown from a sample of respiratory secretions. Two weeks before she got sick, she had provided palliative care for her dying cat, by "holding, hugging, and kissing the head of the cat and allowing the cat to lick her hands and arms."

Fortunately all three women recovered from their infections, but the severity of disease is certainly a concern. As is common, there was no attempt to see whether the implicated pets actually carried the same Pasteurella multocida strain as the owners, but here the authors at least had a good excuse, since all of the pets had died before the owners got sick.

There are some interesting points in the Discussion section of the paper.

"Our 3 patients’ histories of having recently provided palliative pet care to their dying animals were obtained only after P. multocida was identified in cultures and only after subsequent detail-oriented, animal contact histories were obtained."

  • Pet contact (or animal contact in general) is still not asked enough by physicians investigating unknown illnesses. It's unclear whether it would have made a difference in these cases, but knowing more and knowing it earlier can help speed the path to the right diagnosis. Here, pet contact was only considered after a pet-associated bacterium was identified.

"Simply asking whether or not the patient had a pet would not have uncovered the defined association of these respiratory illnesses with palliative pet care. The patient with P. multocida uvulitis even denied having a pet (it had died 6 weeks previously) and only admitted to having provided palliative pet care when asked specifically if she had any animal contacts in the past 3 months."

  • This shows some of the challenges and how care must be taken when asking about pet contact. Simply asking "Do you have a pet?" doesn't cover it.

"Only diligence and very detail-oriented, pet-related histories will likely uncover further patients with invasive P. multocida infection related to the pet owner’s provision of palliative pet care to dying animals."

  • This shouldn't be focused on palliative pet care, since that's a minor component of pet contact. Many other people have close contact with their pets, even when the pets are healthy. It's something that should be considered at all times.

More on MRSA and meat

While it shouldn't come as a surprise considering other studies, a recent study in PLoS One (O'Brien et al 2012) has caused a bit of a stir in the US. This study, headed up by Dr. Tara Smith's research group in Iowa, looked for methicillin-resistant Staphylococcus aureus (MRSA) in retail pork. They bought pork from different stores in Iowa, Minnesota and New Jersey, and tested it for the presence of MRSA. They focused on pork because MRSA can be found widely in pigs internationally, including in the US.

Not surprisingly, they found MRSA. Overall, they tested 395 pork samples from 36 stores, including both "conventional" pork (300 samples) and "alternative" pork (95 samples). The latter consisted of samples labelled "raised without antibiotics" or "raised without antibiotic growth promotants." MRSA was found in 6.6% of samples; 6.3% of conventional pork samples and 7.4% of alternative pork samples.

When they looked at the MRSA types that were present, 27% were the ST398 "livestock-associated" MRSA that's most commonly found in pigs.  However, like our earlier Canadian studies, they found common "human-associated" MRSA strains more often. These strains can also be found in pigs, albeit less commonly than ST398, and it's unclear whether meat contamination with these strains comes from pigs or from people who handle the meat throughout the processing chain.

The fact that there was no difference between conventional and antibiotic-free pork isn't surprising to me, although it catches some people off-guard because of some basic over-assumptions about the relationship between antibiotics and MRSA in food animals. We can find MRSA quite commonly on both regular and antibiotic-free farms.  While it's reasonable to assume that antibiotics were a key factor in driving the emergence of MRSA in pigs, there's not much evidence showing that ongoing antibiotic use is an important factor in determining whether MRSA is present on specific farms or in specific pigs. One potential explanation is that in order to control infections, farms that stop using antibiotics start using other substances such as zinc in feed to help control overgrowth of certain intestinal bacteria, and these compounds may be just as effective at selecting for certain resistant bugs as classical antibiotics. That's just one possible explanation, but it shows how complex the issue of antibiotic-resistance is, and it shows that simply saying "stop using antibiotics," without really looking at the overall problem, won't necessarily reduce MRSA.

What does the presence of MRSA in food mean? Who knows? MRSA is a pretty high profile bug, and with good reason, because it's a very important cause of infection in people. A key aspect of MRSA in food is that cooking food will kill the bacteria (as well as many of the other harmful bacteria that often contaminate raw meat). So proper attention to food safety, including thorough cooking, cleaning of surfaces, prevention of cross-contamination and hand hygiene, should greatly reduce any risk (the problem is a lot of these things aren't usually done very well).

Murray Valley Encephalitis down-under - Help from the chickens

Although the weather in Southwestern Ontario seems quite confused lately regarding whether it wants to be winter or spring, at least we're still a few months off from having to worry about mosquitoes and the viruses they carry once again.  Warmer parts of the world, however, are in the midst of their mosquito season, and some chickens are lending a hand to give people in the area a "heads up" about what's around.

The Health Department of Western Australia has detected Murray Valley encephalitis virus (MVEV)  in chicken flocks in East Kimberley.  The department has also tested and found the virus in its sentinel chickens in Wyndham and Kununurra.  These sentinel birds play an important role as an early warning system when viruses like MVEV are circulating in the area.  Just like West Nile virus, MVEV typically circulates between birds and the mosquitoes that like to feed on them, but problems occur when the same mosquitoes start to bite people (or other susceptible animals such as horses), particularly when there are a lot of mosquitoes, like when the weather is very wet or when there's been flooding.  Although most people who are infected with MVEV or WNV fight off the virus with no difficulty, or may simply develop short-term, non-specific signs of illness like mild fever and malaise, in some people these viruses can cause severe infection of the brain (encephalitis) and may even be fatal.

Knowing that MVEV has been found in these "guardian" chickens lets people know (via warnings issued by the health department) to take extra precautions against mosquito bites, such as:

  • Staying indoors during peak mosquito activity - dusk and dawn
  • Wearing protective clothing including long-sleeves and long pants
  • Applying insect repellent

In North America, you can pretty much substitute West Nile for Murray Valley in a case like this.  Sentinel chickens have been used to provide early warnings of circulating WNV here, before cases are detected in people or horses.  Another means of early detection that is also used is testing pools of mosquitoes directly.

It just goes to show you can still be an important part of the country's defenses, even if you're a little chicken :p

(click image for source)

Bearded dragon leads to gravy Salmonella contamination

No, not gravy made from bearded dragons (a type of reptile), but foodborne Salmonella with a link to the reptile.

Reptiles are an important source of Salmonella, which is why standard guidelines recommend that high-risk people (e.g. children less than 5 years of age, elderly individuals, people with compromised immune systems, pregnant women) not have contact with reptiles or have them in the house. A report in Zoonoses and Public Health (Lowther et al 2011) highlights another possible risk.

The report describes a Salmonella outbreak that was traced back to a potluck dinner. Nineteen cases were identified, 17 primary cases (people that attended the dinner) and two secondary cases (household members of people that attended the dinner). Overall, 29% of people that attended the dinner got sick. A further 18 people had some intestinal disease but strictly speaking didn't fit the definition for a case (however it is suspected that they were part of the outbreak). Salmonella subspecies IV (a type mainly associated with reptiles) was isolated from the stool of five people, confirming the occurrence of an outbreak.

As is typical, food consumption history was evaluated. Sixteen of the 17 primary cases reported consuming turkey gravy, which was a statistically higher proportion than that of people who did not get sick. The gravy was made at the private home of a person who didn't attend the dinner. This was the only home of the people involved where reptiles were kept. Two healthy bearded dragons lived in the house, in a terrarium in the living room.

The investigation focused on the reptiles, since the Salmonella strain found is typically associated with reptiles, and the turkey (the source of the gravy) had no evidence of Salmonella contamination based on testing. Samples from the environment of the household where the gravy was made were collected, and two types of Salmonella were identified. One of these Salmonella types (Salmonella Labadi, which was different from the outbreak strain) was isolated from one of the bearded dragons, as well as the inside and outside of the terrarium glass, other terrarium surfaces, surfaces around the terrarium, the bathroom sink drain and kitchen sink drain.

A common question that comes up when people have reptiles and high risk people in the house is "If I don't take the critter out of the cage, I should be ok, right?" Unfortunately, that's not true. Human Salmonella infections have been clearly identified in situations where reptiles don't leave the terrarium because (as was the case here), while the reptile may not leave the terrarium, Salmonella often does.

The person who made the gravy said that the bearded dragons had not been out of the terrarium when food was being prepared. A child was responsible for feeding the reptiles and cleaning the terrarium, and was supposed to use the bathroom for terrarium cleaning. However, it was reported that the reptiles' dishes "might have" been cleaned in the kitchen sink during the the day period when food was being prepared for the party.

The overall conclusion was that this outbreak "probably resulted from environmental contamination from bearded dragon faeces." It's a reasonable conclusion. Even though the same Salmonella strain wasn't found in the reptile, it makes sense because the reptiles were the most likely source of environmental contamination in the household, and that was the most likely source of the foodborne contamination. Reptiles can shed various Salmonella strains and they can shed intermittently. It takes multiple samples over time to get a real idea of the scope of Salmonella shedding, and I assume that one or both of these reptiles were shedding the outbreak strain at some point.

How can something like this be prevented, since the standard recommendation of having high risk people avoid contact with reptiles doesn't apply to this type of situation?

  • Good hygiene practices should be used when handling reptiles and their environments. In particular, there should be proper attention to hand hygiene after contact with reptiles or their cages.
  • Reptiles should not be allowed in the kitchen. Ever.
  • Food and water bowls should not be cleaned in kitchen sinks. Terrariums should not be cleaned in kitchen sinks. Ideally, they shouldn't be cleaned in bathroom sinks either. (If possible they should be cleaned outdoors with a hose.)
  • Good food handling practices are critical. Here, gravy wasn't re-heated to a high enough temperature to kill the contaminating Salmonella. Adequate re-heating would have prevented this outbreak.

Shelter Giardia outbreak from birds?

The Redlands Animal Shelter in California is looking into bird control measures after blaming Giardia infections in dogs on exposure to wild bird poop. On Facebook, Redlands Friends of Shelter Animals have declared "We have a serious problem with birds at the shelter. They land on the kennels and poop goes into the water bowls and give the dogs giardia - which is a parasite that gives them explosive diarrhea."

Giardia is a protozoal parasite that can cause diarrhea in dogs and other species. It can also be carried by healthy dogs, at relatively high rates in some groups. The scope of the problem at the Redlands shelter isn't clear since the news article only talks about one case. Whatever the scope, shelter management is blaming the birds.

Apparently, discussions are underway with different companies about a solution to the bird problem, something that is anticipated to be expensive. However, it's all too common for people to jump the gun on expensive interventions when there's an outbreak and overlook the root causes. While news reports don't always give the whole story, I'd be wary about blaming birds without much more evidence.

Can wild birds carry Giardia? Yes. However, there's more to the Giardia story than that. It doesn't sound like they've actually tested the bird feces to determine whether Giardia is there. Additionally (and critically) it doesn't sound like they've determined the type of Giardia that's infecting the dogs. There are different types (assemblages) of Giardia and most have a limited range of species they can infect. The vast majority of dogs with Giardia in most regions are infected by Assemblage D, a dog-specific strain that comes from other dogs and poses no risk to people. I'm not aware of Assemblage D being found in birds. Dogs can also be infected by Assemblage A, a type that infects people, and also can infect birds.

So, if Assemblage D is involved, they need to look at transmission between dogs within the shelter. If Assemblage A is involved, they still need to focus on dogs but could investigate birds as a potential source.

Overall, Giardia transmission is much more likely due to breakdowns in cleaning, disinfection, hand hygiene and general shelter practices rather than birds pooping in water bowls. It's a lot cheaper to address these shelter management practices (which will also help control various other infectious diseases) rather than dumping a lot of money into controlling bird exposure when in fact that may not be causing the problem. Trying to reduce exposure to bird poop is a good thing as a general practice, but it's important to focus efforts and resources on finding and addressing the true root problems during an outbreak. 

More information about Giardia can be found on the Worms & Germs Resources page.

Human rabies imported from Haiti

Last summer, I wrote about rabies in person from New Jersey, and now the full report about the case is available.

The unfortunate victim was a 73-year-old Haitian women. She initially went to an emergency room with a complaint of right shoulder pain, chest pain, headaches and high blood pressure. Difficulty swallowing was also noted when she was given pain medications, but she declined further testing and was discharged. It's not surprising that rabies wasn't considered at this point, although I doubt she was asked about animal contact or animal bites as a routine history question.

The next day, the woman went to two different emergency rooms, complaining of shortness of breath, spasms, hallucinations and balance problems. A cause was still not readily apparent, and over the next couple of days, her condition deteriorated, with development of more neurological abnormalities including tremors and mild seizures. Encephalitis (inflammation of the brain) was diagnosed, and a range of potential causes were ruled out. A nuchal skin biospy was collected for rabies testing but she was declared brain dead by the time results were obtained.

The strain of rabies that was identified most closely matched a canine rabies virus variant from a person in Florida who acquired rabies in 2004 while in Haiti. Upon further investigation, a cousin recalled that the person had been bitten by a dog in Haiti a few months earlier. The bite wasn't considered severe and medical attention wasn't sought.

As an almost invariably fatal infection but an almost completely preventable disease with proper medical care, education is a key aspect of rabies control, and that's where most of the breakdowns occur. This person didn't seek medical attention after the bite, because the bite wasn't too severe. Unfortunately, mild bites can transfer rabies just like severe bites, and any bite needs to be investigated as a potential source of rabies, particularly in highly endemic areas.

Canine rabies is a major problem internationally, accounting for tens of thousands of human deaths each year. Canine rabies has been eradicated in the US, meaning the canine rabies virus strain is no longer circulating. That doesn't mean dogs in the US can't get rabies, since they can be infected with various wildlife strains, but there is not a circulating pool of canine rabies virus like in some other regions. Canine rabies is still endemic in Haiti, although there have been efforts to control it through education and vaccination of dogs and cats in the country (where less than 50% of dogs and cats are vaccinated).

People living and traveling to rabies-endemic regions like Haiti need to be aware of the potential risk of rabies and consider any dog bite a possible rabies exposure. Similarly, healthcare workers need to query animal exposure and animal bites as a routine practice, since as with this case, rabies can be hard to diagnose initially.

(click image for source)


More US bat rabies

Following on the heels of a case of bat-associated rabies in a South Carolina woman, a Massachusetts man has contracted rabies. Little information is currently available, although authorities state that they believe he was exposed by a bat in his home. News reports state that he's in critical condition but it's unfortunately very unlikely that he'll survive. Family members are receiving post-exposure treatment, however it's unclear whether this is because of concern for exposure from the infected man, or from the bat.

While these two cases don't represent a rampant rabies epidemic, it shows that there is still a long way to go with education of the public about bats and rabies. Rabies is a disease of extremes. It is essentially 100% preventable in people if exposure is identified and managed properly. It's also almost invariable fatal once disease sets in.

Tags: ,

Variable pet bite advice

It seems like pet bite articles come in waves, with a recent cluster showing the variable quality in advice that's available.

Often, they are holiday "filler" articles that provide some basic useful information but overall are of limited use or even harmful based on their very superficial approach. They often mention rabies, get a quick quote from a veterinarian or someone in public health, but don't emphasize the potential problems that can occur with even apparently minor bites. The thing that often raises my ire is the common statement about watching the bite and going to a doctor if your limb swells up or has pus oozing out, without talking about the need for proper post-bite care to actually prevent that from happening.

Anyway, I came across a couple of better articles recently, that get some good information across in a nice, readable manner. One, an article in "The Herald News" entitled "Cat bites always require check by doctor", gets a very important point across quickly.

The news story details the saga of the PJ, a 13-year-old cat, and his owner. PJ bit the woman on the arm causing a seemingly minor wound, but by the next day, her arm was red and swollen, necessitating a round of intravenous antibiotics and four days in hospital. In the article, Gail Steele, an infection prevention nurse, states "Cat bites.. must always be considered medical emergencies. This is especially true when they occur in the hand because that area has a richer blood supply...Their sharp little teeth are like little needles, and they inject bacteria right into soft tissue..."

This is a pretty extreme example of what can happen after a cat bite, but it's far from rare. It's not really clear whether this person's infection would have been prevented with normal practices. Bites over certain sites, like the hand, foot, joints, tendon sheaths and prosthetic devices, and bites to young kids, elderly individuals and people with compromised immune systems typically require prophylactic antibiotics.

If this was actually a bite over the arm, as reported, antibiotics might not have been given, even though cat bites are much higher risk for infection than dog bites. However, the key is that bites should be assessed so proper determination can be made about the need for antibiotics. All infections won't be prevented but appropriate medical care should reduce the risk and also allow for adequate consideration of whether rabies exposure might be a concern.

There's a sad end to this article, as PJ bit his owner again a few months later. The bite was over the shin and, given her previous problems, antibiotics were provided. However, the owner still ended up with an abscess that required surgical intervention and took months to heal. (Whether this person has really bad luck, whether PJ has a particularly bad mix of bugs in his mouth or whether the owner has an unidentified problem with her immune system is unclear, but back-to-back severe infections is a major issue, especially with a cat that is prone to biting.) The woman's daughter ended up taking PJ home with her, but after another unprovoked bite, he was euthanized.

Cat bites aren't always this bad, and in fact, most don't result in complications. However, that's not to downplay the potential problems. When you consider how often cats bite, how often cat bites are not properly cared for because they appear to be minor, and the ability of a cat bite to inoculate bacteria deep into the tissues, it's easy to see how bad things can happen. Reducing the risk of cat bite infections involves a few basic steps:

  • Reducing bites. Good handling and training (of both cats and people) can reduce the likelihood of bites. This is particularly important with kids, who may be bitten through rough or excessive handling of a cat.
  • Bite first aid. Prompt cleaning of the wound can reduce bacterial contamination. Thorough cleaning with soap and water can have a big impact on the likelihood of infection.
  • Medical care. Bites over certain sites or to certain individuals (see above) almost always require antibiotics. There's less consensus over other types of bites, but getting medical care is a good idea in any case to determine if there are any factors that indicate a need for antibiotics.
  • Rabies avoidance. Every bite should be reported to public health so the rabies aspect can be covered. The biting animal needs to be identified and observed for 10 days. If it's healthy after 10 days, it couldn't have been shedding rabies virus. If the biting animal cannot be identified, it's likely that post-exposure treatment for rabies will be required.
Tags: , ,

Horse rabies in Florida

Marion County (Florida) public health personnel recently issued a rabies alert after a horse in the area tested positive for the virus. It’s a standard alert, emphasizing avoiding contact with wildlife, reducing things that attract wildlife to houses (e.g. accessible pet food or garbage) and recommending vaccination. Interestingly, while this alert was prompted by a case of rabies in a horse, it only mentions vaccination of dogs, cats and ferrets. That may have been because it was an off-the-shelf alert, not really tailored to this situation, but it shows how horses can be overlooked when it comes to rabies.

Fortunately, rabies is a rare disease in horses. In 2010, there were 37 reported cases of equine rabies in the US and only one in Canada (two Canadian cases have been identified so far this year). That’s a very low rate, especially considering the number of horses out there, but it’s still more cases than there should be for a very serious yet highly preventable disease.

Unfortunately, rarity sometimes breeds complacency, so despite the fact that rabies is invariably fatal in horses and rabid horses pose a risk to people, vaccination of horses is often overlooked. While rabies is rare in horses, rabies vaccination shouldn’t be rare. Every horse in a rabies endemic region (or that might be traveling to such a region) should be vaccinated against rabies. It’s cheap insurance against a very dangerous and deadly disease.

Human rabies in South Carolina

A South Carolina woman has been identified as the first case of human rabies in the state in the past 50 years. Very little information has been released, including whether or not she is still alive. Unfortunately, the odds are quite low that she survived. Successful treatment of a Wisconsin girl in 2004 using a radical new protocol was accompanied by much optimism for treatment of this disease, which at the time was described as invariably fatal. While a few other survivors have been reported, rabies is now often referred to as almost invariably fatal, since the protocol has not been the panacea that it was hoped to be, and death is still the typical outcome.

In the latest case, exposure to a bat in the home a few months earlier was the suspected source of infection. This is a common source of exposure and a typical time frame. Few details are presented, so it's not clear whether the woman was known to have been bitten by the bat or whether that's suspected for some other reason (such as lack of other possible sources).

This is another indication of the care that needs to be taken around bats. While human rabies is fortunately very rare in Canada and the US (it causes tens of thousands of deaths each year worldwide, mainly from dogs in a few developing countries), bats are an important source of exposure. Any encounter with a bat needs to be accompanied by a determination of whether there is a risk of rabies exposure. Anyone bitten by a bat should try to make sure the bat is caught and tested for rabies, because otherwise there's no way to prove it wasn't rabid, and post-exposure treatment would be indicated.

Image: Bat bites can be very dangerous, because they carry the risk of rabies transmission, but they can be so small that they may not even be detected. (Image source:

Pigeon fever in Louisiana horses

Pigeon fever is an equine disease that doesn't have anything to do with pigeons. It's an infection caused by the bacterium Corynebacterium pseudotuberculosis which results in the formation of abscesses, usually along the chest (pector